Atomic Distributed Transactions: a RESTful Design

Guy Pardon
ATOMIKOS
guy@atomikos.com
http://ww. at oni kos. com

ABSTRACT

The REST architectural style supports the reliable intavacof
clients with a single server. However, no guarantees candgem
for more complex interactions which require to atomicatgnts-
fer state among resources distributed across multipleeservin
this paper we describe a lightweight design for transaatioom-
position of RESTful services. The approach — based on the Try
Cancel/Confirm (TCC) pattern — does not require any extensio
the HTTP protocol. The design assumes that resources agadds
to comply with the TCC pattern and ensures that the resoimees
volved in the transaction are not aware of it. It delegatesdispon-
sability of achieving the atomicity of the transaction tocmiina-
tor which exposes a RESTful API.

Categories and Subject Descriptors

K.4.4 [Electronic Commercd: Distributed Commercial Transac-
tions; H.2.4 Bystem$: Transaction processing

Keywords

RESTful Web services; REST; Web API Design; Atomicity; Atom
Distributed Transaction Protocol

1. INTRODUCTION

Reliability of single client-server interactions is caesied as
a primary concern by the REST architectural style [4]. This i
achieved through the uniform interface semantics of iddemo
methods (e.g.GET, PUT, DELETE in HTTP) so that any failure
during these interactions can be addressed by simply ngtityie

request. However, no guarantees can be made for complex inte

actions which atomically transfer state among multipleoueses
distributed across multiple RESTful Web services [20]. Ewf
ample, when a client interacts with more than one RESTfulsAPI
for flight reservations, we want to ensure that all requestper-
formed atomically to complete the reservation of all flights a
single step.

The goal of this paper is to describe a simple solution whitsh fi
the following design constraints: 1) Using a lightweiglatrtsaction
model (e.g., ATOMIKOS TCC [13]) to minimize interoperabyli
risks; 2) Avoiding extensions to the HTTP protocol to maxiei
adoption; 3) Deploying the transaction coordinator as a RE&S
service (as motivated in the remainder of this paper); 4)pieg
the participants unaware that they are part of a transafsfopping
transaction contexts has shown to be major pain point afilblised
transactions).

Copyright is held by the author/owner(s).
WWW’'14 CompanionApril 7-11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04. http://dx.doi.org/10.512667948.2579221.

Cesare Pautasso
Faculty of Informatics, University of Lugano,
Switzerland
c.pautasso@ieee.org
http://ww. paut asso.info

The problem about how to transparently deal against fagoee
narios within REST compositions, where state needs to bmiato
cally transferred between more than two services, is an itapb
one. The solution makes it possible to group multiple RESififu
teractions and treat them as a single logical step, as willessure
that it is possible to guarantee the consistency of a sesofirees
which belong to multiple RESTful Web services that are dggdb
on different Web servers. Whereas solutions have been geodto
batch interactions affecting multiple resources provibea single
server (e.g., WebDAV's explicit locking methods [6], or thansac-
tions as a resource approach from [20, p.231]), these araopdit
cable to interact with multiple resources distributed asnmultiple
services.

This paper’s contribution focuses on addressing the aipmic
property [7] of distributed transactions across RESTfulbVger-
vicesin a simple way10]. This already addresses the requirements
of a wide class of applications, where atomicity is a ne¢gsshile
isolation is not. For example, all scenarios involving sddmel of
resource reservation where clients may need to atomicatfppn
multiple purchases, or, more in general, atomically chahgetate
of a set of distributed resources.

This paper is structured as follows. In Section 2 we enureerat
the assumptions behind the Try-Cancel/Confirm pattern andith
relates to lightweight distributed transactions. SecBooutlines
the transaction protocol, which is illustrated with an epdarin the
following Section 4. We present a detailed view on the design
the protocol in 5, and summarize the participant and coatdin
APIs in Sections 6 and 7. We reflect upon the design and discuss
some open questions in Section 8. We give a brief survey afae|
work in Section 9 before drawing some conclusions in Sectibn

2. ASSUMPTIONS

The protocol we follow is based on the following assumptiens
without these assumptions there is no practical need fantimed
solution.

Assumption 141): A business transactioh is sending requests
R to different RESTful service§j. Each participans is au-
tonomous and loosely-coupled withand the othes;.

Example T represents a flight reservation across two airlines,
consisting of a requesR; to book a first flight at airlines; and a
connecting flighR, at airlineS,.

A1 is important since it distinguishes our solution from exigt
techniques like session-based optimistic locking (a stechthdus-
try practice that works across one site only [5, p.416]). e\tbiat
for simplicity, we assume no ordering amoRg(no explicit first or
last request).

Assumption 2 4,): Any R of T can fail in a non-transient way.

http://www.atomikos.com
http://www.pautasso.info

Example booking the connecting flighg, may fail due to lack
of available seats.

A, emphasizes the point that if nothing can ever fail then idem-
potence is all that is needed for atomicity when each redgeist
retried until all have succeeded. Idempotence can helfpvestan-
sient, technical failures but not fundamental failureshsae lack of
business resources to comply with the request.

Assumption 3 Az): T needs to be atomic, i.€l, needs to either
happen entirely (alR, € T succeed) or not at all. In the latter case,
the end result needs to be as if none of fy@xecuted in the first
place.

Example you want to book the entire flighRf andRy) or none
at all. If only part of the flight would be booked, you would be
charged for an incomplete trip that would lead you to the \gron
destination.

Aj states the important requirement that the outcome of théewvho
transaction is what matters.

Assumption 4 A4): S temporarily reserves resources on behalf
of RinT.

Example airline $; holds a seat reservation for the duration of
T, but will not keep the seat reserved forever: eitfiesucceeds
(and $; bills the customer) of fails (andS; releases the seat for
another customer to book).

Corollary 1 C1): EachR, taking part inT may need to be can-
celled after it has been executed. Consequently, acieeds to
have a cancellation eveR} cancelassociated with it.

FromA; + A it follows that partial transactions can exist in case
of failure(s)t. For instance, it is possible & to fail, leaving the
effects ofR;. FromAg; it follows thatR; then needs to be cancelled.
S is autonomous (by\;) so this requires the existence of a cancel
eventRy cancelto inform §; about this event. In this case, by invok-
ing Ry cancel the system can ensure atomicity. The same holds for
everyR;.

Corollary 2 Cy): Each participan§ will offer/await a confirma-
tion R confirm for everyR;.

From A4 we know thatS reserves resources on behalf ©f
From C; we know thatR; can be cancelled.§ will thus await
confirmation ofR; to signal that cancellation will no longer hap-
pen. Since onlyl can know when all its requests have successfully
finished, it is the responsibility of to trigger the confirmation.

Example after flight reservatiorR, completes, also flighRy
needs to be confirmed with (and byT) so that payment can be
issued. Cancelling a confirmed flight may still be possiblecbuld
lead to cancellation fees.

3. PROTOCOL OUTLINE

The previous assumptions lead to this protocol:

1. Aclient goes about interacting with multiple RESTfulhdee
APIs following a given workflow.

2. Interactions may lead to a state transition of the serder-
tified by some reservation URI. This URI can be later used te co
firm or cancel it. If the service does not hear anything aftens
service-specific timeout, it will cancel autonomously.

3a. Once the workflow successfully completes, the set of+ese
vation URIs is used to confirm the state transitions of theises
with idempotent requests (e.@UT).

3b. If the workflow fails, the set of reservation URIs that dav
been collected until the failure occurs are used to sigreti eéithe

1As failures we abstract both business-level failures abagdkch-
nical failures, such as server crashes or network outages.

services with idempotent messages (eDgl.ETE) to cancel their
state transition.

The protocol guarantees atomicity because if it stops befimps
3a/3b the result is a cancel performed independently by paudtt-
ipant after a timeout. Otherwise each participant receawveilem-
potent request for confirmation (step 3a)/cancellatioep(8b) sent
during the final phase. A more detailed discussion coveringtm
failure and recovery scenarios can be found in [14] and irdire
tailed design presented below.

As with every two-phase commit solution, heuristics aredeee
to deal with timeouts. To deal with them, we propose that ép st
2, a timeout is specified after which the service will unitatly
cancel. If step 3 happens too late then this might resultenristic’
anomalies (i.e. the transaction atomicity was violated}hht case,
human intervention is required to reconcile the state acbisites.
In any case, the transaction service in step 3 is free to dewlictn
it will attempt confirmation (i.e., it might conservativehport the
transaction if the participants are too close to expiring).

4. EXAMPLE

As we are going to show, we claim that the REST uniform in-
terface is sufficient to comply with the assumptions requite
implement the proposed protocol. Thus, it is possible tdexeh
distributed transactions over RESTful service APIs withemy ex-
tension of the HTTP protocal the services are designed to comply
with the Try-Cancel/Confirm pattern.

In the context of the running example, this pattern can be ap-
plied to the design of the RESTful flight reservation API ak fo
lows. Clients can inquire about the availability of flightsthe
URI: /flight/{flight-no}/seat. For example, th&ET
/f1ight/LX101/ seat request will return a hyperlink to some
of the available seats on the flighX101 or none if the flight is
fully booked. The URI of the chosen seat can be forwarded with
a POST request to thé booki ng URL, which will create a new
booking resource by returning a hyperlink identifying itthuas
/ booki ng/ {i d}/ . The body of the request can contain payment
information as well as a reference to the chosen flight and(sea
<seat href="/flight/LX101/seat/63F"/>). Seats on
aflight are only reserved for a limited amount of time, dunivigich
the client should confirm the reservation. The booking caodre
firmed using aPUT / booki ng/ {i d} request or canceled with
the correspondin@ELETE / booki ng/ {i d} request.

The example illustrates that a RESTful service APl complian
with the uniform interface constraints can make use of hyger
dia design to support the interaction with clients follog/ithe Try-
Cancel/Confirm pattern. In the examples, clients initatize state
of a reservation with a standaRDST request, which returns a URI
identifying the resource that has been initialized. Cherdn use
this URI to confirm the reservation (wifPlUT) or to cancel it (with
DELETE). Additionally, the state of the newly created resource
should be discarded if a confirmation is not received by theice
within a given timeout (the duration of which can be discextby
the client with aGET request on the same hyperlink).

A possible successful run of the protocol guaranteeing tibva-a
icity of multiple HTTP interactions could be summarized ab f
lows:

=CET swi ss. coniflight/LX101/seat

L <200
1 =CET easyjet.conm flight/EZ999/ seat
© <200
=POST sw ss. conf booki ng
2. <302
Location: /booking/A

=POST easyj et. conl booki ng

2. <302
Location: /booking/B
3a =PUT swi ss. conl booki ng/ A
" <204
3a =PUT easyj et. coni booki ng/ B
" <204

The following shows a failed run of the composition, where th
protocols will perform the cancellation of the successfudbm-
pleted state transitions:

=CET swi ss. coniflight/LX101/seat

L <200
=POST sw ss. conf booki ng
2. <302
Location: /booking/A
1 =CET easyjet.conlflight/EZ999/ seat
* <204 (No seat avail abl e)
3b. =DELEt e swi ss. com booki ng/ A

+<200

5. DETAILED PROTOCOL DESIGN

The section proposes an incremental presentation of oigrdes
decisions, motivations and trade-offs, based on a stosgdap-
proach. Wherever possible, we have kept the response baaly to
minimum (merely 204 status) in order to avoid the need fomdefi
ing ad-hoc representation media types that introduce nuangling
than necessary [17].

5.1 The Basics: Cancel vs Confirm

One of the properties of classical transactions is the gueea
that every change is temporary (subject to rollback’) Lth appli-
cation explicitly indicates that everything is done and barsaved
(commit’). For REST, we think the same should be possiblewH
ever, there is no classical rollback’ because we use seimimca-
tions rather than databases and their locking mechanischteve
this. In TCC, the notion of 'rollback’ is replaced by 'cancdlike-
wise, the notion of 'commit’ is replaced by 'confirm’.

5.1.1 Cancel

As an application developer, in case of failures, | want teeré
changes across multiple, separate participants.

For simplicity (and just like in classical transaction gyss), we
have chosen the cancellation mechanism to be implicit atedrial
to each participant service: after some time-out, eachgjzat
will/should cancel (revert) it on its own. This way, withdutther
notifications, each participant service will eventuallncal and the
global transaction will be cancelled by default. This geatmpli-
fies the failure semantics across multiple participantisesy

Note that our notion of cancelling does not preclude anyieabn-
specific recovery mechanisms. For instance, an e-commezbe w
site probably allows reservations to be made witPGST request.
If the reply gets lost, the user might still be able to verifythe
reservation was done (e.g., viaGET to some shopping basket
or equivalent resource representing the session state)amtichue
from there. We merely offer the extra option of cancellingadast
resort.

5.1.2 Confirm

As an application developer, | want to confirm as soon as | am
done so that no participant will cancel afterwards

If by default everything will be cancelled, there needs toabe
way to perform otherwise. In TCC, this is done via an explicit
‘confirm’ request on the participant service(s) involved order to
do this with REST, the minimal requirement is a URI addreg tire
resource to be confirmed. Only the participant service bauls

determine what that URI is - so it needs a way to communicage th
URI towards the outside world. With this in mind, we desigtieel
notion of theparticipant reservation link . The link URI (used to
confirm it) is associated with the expires attribute indizgtvhen
the participant itself will cancel autonomously. Therel@aome
(fixed) meta-data about the protocol itself, useful to iatkcthe
semantics of the link (thecc link relation).

The participant reservation link could be embedded in a JSON
payload as shown in the following example:

{ "participantLink": {

"uri":"http://ww. sw ss. com booki ng/ A",
"expires":"2014-01-11T10: 15: 54. 261+01: 00",
"rel":"tcc",

}
}

It is up to the participant to negotiate with the client an rapp
priate timeout duration. In the simplest case, reservataye guar-
anteed for a fixed amount of time. It is also possible to carsid
cases where the timeout depends on the client profile, or an ex
tended timeout may be granted for a fee. Since this feattretaf
the interface between the participant and the applicati@do not
explore it further in this paper.

The assumption of our design is that a participant resenvati
link is properly identified (hence thtecc link relation) so that con-
firmation can be done with the following:
=PUT /booking/ A HTTP/ 1.1

Host: www. swi ss.com

Accept: application/tcc
<HTTP/ 1.1 204 No Content

Although this only shows how to confirm one single participan
it does lay the foundation for our complete solution.

5.1.3 Timeout

As a participant, | want to keep the ability to time-out andcel
the reservation on my end. Clients should be informed thafico
mation is no longer possible.

Confirmation requests might come too late, i.e. after théqar
pant already timed out and cancelled on its own. This visléte
intention of confirmation and therefore should be commueit#o
the caller. The participant does this as follows:
=PUT /booking/ A HTTP/ 1.1

Host: www. swi ss.com

Accept: application/tcc
«<HTTP/ 1.1 404 Not Found

5.2 Reusing The Hard Bits: Coordinator

With nothing more but the basics, distributed transactiares
possible if they are managed by the application develope&rckm
like the XA protocol enables ACID transactions). Howevhrs iis
error-prone and difficult to manage, because concerns ¢ikevr
ery and failure handling need to be taken into account. Atse,
important to avoid confirmation attempts after one or moneeti
outs have happened, since this may lead to conflicting owgsah
the global transaction. All this is specialized logic thahiard to
build on your own. Just like ACID transactions rely on a tems
tion manager to manage the XA intricacies, we introduce @daim
component sharing the same responsibilities.

5.2.1 Transaction Coordinator

As an application developer, | want to reuse existing corgirm
tion logic so that | don't have to deal with failure recoverg oy
own

If the confirmation logic is offered as a reusable compontg (
‘coordinator’) then many concerns no longer need to be detit
by the application developer. Also, the error scenariosare@amost
difficult to test are abstracted away into a reusable anddesim-
ponent that can be trusted. For these reasons, we develtzeta
action coordinator component. Moreover, this componentatso
be delivered as a service - as explained next and shown ime=igu

5.2.2 Transactions as a Service

As an application developer, | want the coordinator to be SRE
ful service so | can access it anywhere, anytime

What better way to make a component available to a REST ap-

plication than by exposing it as a RESTful service itselferEhare
many advantages, some of them being:

e Integration into REST applications is, by definition, easd a
natural since no other technical dependencies than RESTare
introduced.

e The service can be made available to any device, anywhere,

anytime.

e The service can be deployed on a reliable environment, with
good connectivity to the participants, while keeping th&t & the
applications closer to their users (e.g., on mobile deyices

e Thanks to the simplicity of REST and since no HTTP exten-
sions are required, the interoperability of the transactioordina-
tor with both applications and participant services is measier to
achieve.

5.2.3 Confirmation

The application developer now needs a way to invoke the ¢oord
nator service to perform the confirmation phase

We chose the following very simple approach, where a set of
reservation links is simply transferred to the coordinaervice
with an idempotenPUT request carrying a 'transaction’ payload
in the request body. The example shows the use of plain JSPN [1
but any collection media type that can carry a set of linkeeissed
with a set of timestamps can do.
=PUT /coordinator/confirmHITP/ 1.1

Host: www. t aas. com

Content - Type: application/tcc+json
Cont ent - Lengt h: 253

{
"transaction" : [
{
"uri" : "http://ww. swi ss. com booki ng/ A",
"expires" : "2014-01-11T10: 15: 54. 261+01: 00"
H
{
"uri" : "http://ww. easyjet.com booki ng/B",
"expires" : "2014-01-11T10: 15:54. 261+01: 00"
}
]
}

The coordinator will delegate the confirmation request tpal-
ticipant(link)s included in the supplied transaction. lifgoes fine
then the following would be the typical response:
<HTTP/ 1.1 204 No Content

For simplicity, we did not attempt a transaction resourcsgie
there is no separate resource that identifies the tranea&fwould
this be necessary and required then we can always add it faer
now, all that matters to us is validating the concept of taations
for REST with a working but minimal implementation.

5.2.4 Failed Confirmation

As an application developer, | want to know when the coordina
tor failed to confirm.

1.1 R1 = /booking/A

1. bookTrip

1.3 PUT /confirm
Transaction
Coordinator

1.2 R2 = /booking/B

SwWiss

easyjet

Figure 1: Transaction Coordinator delivered as a service.

When the coordinator fails to enforce the confirmation, wedhe
a way to communicate the problem back to the applicationr&he
are two classes of problems that are relevant:

1. Problems where the overall atomicity guarantees have bee
preserved: this happens if ALL participants have timed outave
been canceled by the time confirmation starts.

2. Everything else: this is where the overall transactioargo-
tees might not have been preserved. This happens if someipart
pants timed out while others confirmed, or if some participhave
become unreachable.

The corresponding solutions are like this:

1. If every participant timed out and cancelled: this is aadéd
by a '404 Not Found’ error on behalf of the coordinator. It
signals that, although confirmation was desired, canaatidtap-
pened instead. While this may not be desirable, it doesastilere
to the atomic transactional semantics of all-or-nothing.

2. Everything else: to signal conditions like these, therdo
nator uses a409 Confl i ct’ status code and can return a de-
tailed log, showing which of the given reservation links lcbhe
confirmed and which could not be confirmed. Note that itis the r
sponsibility of the coordinator to minimize the number dfifees
in this class.

5.3 Recovery

5.3.1 Idempotent Confirmation (at the Participant)

As a coordinator, | want confirmation of the participant to be
idempotent so | can retry confirmation after a failure or dnas

This is one of the main reasons why we chose to RIJE for
confirmation. With the given design of the participant sq fae
need no extra changes to support this.

All the coordinator needs to do is log the participant links o
ongoing transactions in the confirmation phase. Recoveryaded
in two typical cases:

1. The coordinator itself crashes: once it comes back ug-it r
tries the remaining participant links for which it was comnfing the
transaction.

2. Any participant crashes, or (the equivalent) becomesaatr-
able due to network errors: the coordinator simply retr@sficm
requests.

5.3.2 Idempotent Confirmation (at the Coordinator)

As an application developer, | want confirmation by the ceord
nator to be idempotent so | can retry confirmation after aufglor
crash.

Imagine that the application succeeds at doing all the wair&l
participant service providers involved. At that time it i@vequest
the coordinator to confirm. If there are crashes or netwatlrizs
then the response of the confirm request might get lost; thiddv
leave the application in doubt about the outcome of the &retien.

According to the REST statelessness constraint, once the co
dinator completes the confirm request, it should forget aitipso
the application should hold its own state and should stillember
the set of participants involved. Consequently, it can (simaluld)

retry confirm requests when needed. This is why we chose to use

PUT also for the coordinator’'s confirm requests. The coordinato
will return the same response to subsequent confirmatiarests|
involving the same participants.

5.4 Optimizations

The basic protocol can be optimized a bit for better resousce
age. Indeed, if there are any application-level errors theeems
inefficient to simply let participants hold on to the requitauisiness
resources until they time out by themselves. So here, weptes
some optimizations.

5.4.1 Participant Cancellation

As a participant provider, | would like to be notified as eaaly
possible when there is a need to cancel

The participant service is likely to reserve valuable besere-
sources for the duration of the transaction. Should therz theed
to cancel then it is very likely that the participant servigants
to know about this well before it times out. Again, since we ar
talking about REST, the minimum requirement is a URI to fello
for notifying the participant. For simplicity, we did not wato in-

{

"uri" : "http://ww. sw ss. com booki ng/ A",
"expires" : "2014-01-11T10: 15:54. 261+01: 00"
H
{

“uri” "http://ww. easyj et.conm booki ng/ B",
"expires" "2014-01-11T10: 15: 54. 261+01: 00"
}

]
}

5.4.3 Failed Participant Cancellation

As a coordinator, | don't care if cancellation fails on therfiai-
pant

The coordinator notifies the participant of cancellationt ig-
nores the result. This makes perfect sense, because ecdiacell
is driven by the participant provider’s needs to releaserres re-
source as early as possible. In effect, cancellation is Imereo-
tification out of courtesy. There are a number of differemtsans
that support this decision:

1. Since explicit cancellation of a participant is really apr
tional operation, some participants may return a 405 efrtirely
do not support this operation.

2. Since the participant may have timed out before the coeardi
tor requests an explicit cancellation on it, it may returrOd érror.

3. The participant URI does not really exist for some reason.

In all these cases, the overall transaction is cancellegetere
(since no participant is ever confirmed). Hence, all thesmrgcan
be safely ignored by the coordinator - making the protocoteno
comfortable to use because application developers needmny w
less about error handling.

troduce an additional URI. Rather, we assume that the sanie UR 5.4.4 Failed Coordinator Cancellation

representing the reservation resource that is used forromatfon
can optionally also be used for cancellation as follows:
=DELETE / booki ng/ A HTTP/ 1.1

Host: www. swi ss.com

Accept: application/tcc
<HTTP/ 1.1 204 No Content

Note that the actual response does not really matter siree th
cancellation request is merely a courtesy call on behalhefap-
plication (developer). In its absence, the participant a@ancel
autonomously anyway.

The capability to cancel a participant explicitly is readigtional
in our design: any participant can choose to ignore it. If diga
pant provider does not support cancellation by the appdicahen
any DELETE request would simply produce:

<HTTP/ 1.1 405 Met hod Not Al |l owed

This does not affect overall correctness of the state, shrepar-
ticipant will time out and cancel autonomously anyway. Thhe
consistency of the distributed transaction is eventuaibserved.

5.4.2 Coordinator Cancellation

As an application developer, | want to delegate the cantietia
logic to the coordinator so | don't have to cancel those papant
providers myself.

The following example shows how the application can canitel a
the participants involved:
=PUT / coordi nat or/ cancel

Host: ww. taas.com

Content - Type: application/tcc+json
Cont ent - Lengt h: 253

{

"transaction" : [

HTTP/ 1.1

As an application developer, | don't care if cancellatiofgan
the coordinator

For the same reasons, the coordinator does not return aomg err
upon cancellation; instead, it always return 204 (inclgdoases
where some participant URI does not exist).

Corollary: cancellation by the coordinator is idempotent

This follows from the previous discussion: failed candadias
at both participants and the coordinator can be ignored.célere
decided to use thPUT method for the coordinator’s cancellation
interface: it is idempotent and allows request body confemntike
DELETE).

5.5 MIME Types

5.5.1 Participant:appl i cation/tcc

The participant interactions require no request payload,do
they return any response payload. So we chose this MIME type
purely for indicating the semantics of confirm/cancel expedy
the client. We deliberately omitted any payload from theipgrant
interactions, so implementations can be as simple as pesgith
minimal interoperability risks. There is no need for thetjggpant
to support anything like XML or JSON for that matter.

5.5.2 Coordinatorappl i cation/tcc+j son

JSON seemed the best option to make the coordinator ackeessib
to the largest range of applications. As we imply custom sgits
with some of the attributes, this is reflected in the MIME type

6. PARTICIPANT API

Here we summarize the actual RESTful API from the partici-
pant perspective. Because participant instances are rinepied

by third-party providers, interoperability can only be &sted with
a minimalistic, simple and clear design.

6.1 Participant Responsibilities

The participant manages the provider-specific state ofervas
tion of business resources. By default the reservatiorstonéafter
a while, unless it is confirmed by the application (coordinpt

6.2 Required: time-out and cancel

Every participant implementation MUST cancel autonompusl
after some internal timeout. More precisely: nothing ishmenent
until the participant receives confirmation.

6.3 Required: participant link

Every participant implementation MUST return participink
instances for an invocation that can be confirmed on its ehds&
links contain metadata such as the URI to invoke (for confiiong,
the expiration date/time when the participant will canaeite own,
and other information related to the protocol version amdasgics.

As an example, participant links are of the following form:

{"participantLink": {
"uri":"http://ww. exanpl e. com part/ 123",
"expires":"2014-01-11T10: 15: 54. 261+01: 00",
"rel":"tcc"}

The exchange of participant links is between the partidipad
the application, outside the context of the TCC protocothéiligh

In case of an intermediate (internal) timeout/cancel byptmgic-
ipant itself, it is OK to return 404:
=DELETE /part/123 HTTP/ 1.1

Host: www. exanpl e. com

Accept: application/tcc
<HTTP/ 1.1 404 Not Found

Since DELETE is really an optional operation, some paréintp
may choose not to implement it. In that case:
=DELETE /part/123 HTTP/ 1.1

Host: www. exanpl e. com

Accept: application/tcc
<HTTP/ 1.1 405 Met hod Not All owed

This is perfectly fine in our overall design. Any others (sash
but not limited to, the MIME type not being understood) arsoal
fine here.

6.6 Optional: GET for failure diagnostics

The participant service may implement GET to allow for feglu
diagnostics. In-line with our intent of being minimalist@iagnos-
tic features are (currently) outside the scope of our puaitiself
and left to the application designers, so they can be tunexdpmr-
case basis.

7. COORDINATOR API

The coordinator service is implemented by us and used by-appl
cation developers. Therefore, we present the coordinaitdogol
from the point-of-view of a client of the RESTful interface ap-

our example suggests JSON, there is no real requirementeon th posed to discuss the implementation internals of the coatdi.

data format of this exchange: this is entirely between th#iga
ipant provider and the application developer to agree onhe©Ot
approaches, such as Link headers [22] can be used.

6.4 Required: PUT to confirm

The URI indicated in the participant link instances MUST sup

port the PUT operation in order to confirm:

=PUT /part/123 HTTP/ 1.1
Host: ww. exanpl e. com
Accept: application/tcc

«<HTTP/ 1.1 204 No Content

Note the MIME type of the request, indicating the expectatio
of the client about the semantics implied by the TCC protocol

If the confirmation request arrives after the participant b
ready timed out and cancelled on its own then the particilgduB T
return a 404 error:

=PUT /part/123 HTTP/ 1.1
Host: ww. exanpl e. com
Accept: application/tcc

<HTTP/ 1.1 404 Not Found

Any other errors will trigger recovery logic in the coordioa
service (typically in the form of retries until it gives up).

6.5 Optional: DELETE to cancel

Each participant URI MAY optionally implement DELETE to
receive explicit requests to cancel:

=DELETE /part/123 HTTP/ 1.1
Host: ww. exanpl e. com
Accept: application/tcc

<HTTP/ 1.1 204 No Content

Any errors during cancel can be ignored and do not affect the

overall transaction outcome.

7.1 Coordinator Responsibilities

The coordinator’s core responsibilities are the following

1. Confirm all participants when asked to do so.

2. Recover after failures of participant instances or tterdina-
tor itself, in particular during the confirmation phase.

3. Intelligently use the supplied expiration date/timeoinfia-
tion to minimize the number of heuristic transaction outesm

4. Determine the right error on problematic outcomes of confi
mation.

5. Nice to have: allow cancellation of all participants.

7.2 PUT to confirm

Use PUT to confirm a transaction with the coordinator service
A transaction is really only a collection of participantki

=PUT /coordinator/confirmHITP/ 1.1
Host: www. t aas. com
Content - Type: application/tcc+j son
Cont ent - Lengt h: 425

{
"transaction": [
{
“uri": "http://ww.exanpl e. com part/ 123",
"expires": "2014-01-11T10: 15: 54. 261+01: 00"
H
{
"uri": "http://ww. exanpl e. com part/ 234",
"expires": "2014-01-11T10: 15:54. 261+01: 00"
}
]
}

If all goes well then the result would be:
«<HTTP/ 1.1 204 No Content

If the request to confirm arrives too late - meaning all pgéints
have timed out and cancelled already, then:

<HTTP/ 1.1 404 Not Found

ipant reservation URIs are public URIs that can be forwarogd

The worst that can happen is a mixed outcome where some par.the application to the coordinator. This is common behasiothe

ticipants confirmed, whereas others did not. This is ineidas
follows:

<HTTP/ 1.1 409 Conflict

Of course, the idea is to minimize the number of cases whese th
happens - which is one important part of the coordinatospoesi-
bilities. If and when this happens, though, it is up to theligpfion
to inspect the affected participants - possibly via a GETiest|to
each participant URI.

7.3 PUT to cancel

A cancellation request is similar to confirmation, excepttfee
URI on which the coordinator is listening:

=PUT /coordinator/cancel HITP/ 1.1
Host: www. taas.com
Content - Type: application/tcc+json

Cont ent - Lengt h: 425

{
"transaction": [
{
“uri": "http://ww.exanpl e. com part/ 123",
"expires": "2014-01-11T10: 15: 54. 261+01: 00"
b,
{
"uri": "http://ww. exanpl e. com part/ 234",
"expires": "2014-01-11T10: 15:54. 261+01: 00"
}
]
}

The only foreseen result is:
<HTTP/ 1.1 204 No Content

Any other outcome can be safely ignored since by definition no
participant has been confirmed, meaning eventually all wak
be cancelled everywhere.

8. DISCUSSION

We have presented a minimalistic protocol that offers thedsa
of atomicity guarantees for transactions spanning acradspte
RESTful Web services. This section provides an overviewesf d
sign issues that are still open to further refinement andudion.

8.1 Application-Level Errors:
Cancel after Confirm

For simplicity, the coordinator does not check nor prohthi
case where the application first confirms a transaction aed th
later cancels the same transaction - for whatever reasoncowe
sider this to be bad behavior on the account of the applicatiot
checking for it would mean introducing new error codes oiilbloée
participant side and the coordinator side. We've tried,thatl as a
result we could no longer tolerate the cancellation of umkmpar-
ticipants, nor could we tolerate other types of participfailtires.
The resulting added complexity seemed too high to justiéydor-
responding gains so we've chosen not to reject such sequénce
requests. It is thus the responsability of the applicatievetbper
to avoid that confirmed transactions are then cancelled atea |
point in time.

8.2 Security

We did not consider security because we thought it is an gatho
nal matter typically dealt with by HTTPS. Neverthelessy¢hmay
be arguments in favor of more non-trivial solutions such & U
signing, OAuth and the like. Likewise, we assume that théigar

open Web, where links are meant to be shared. However, ifahe p
ticipant will only allow the original client application tllow the
reservation link, then additional work is needed for theligpfion

to delegate trust to the coordinator so that also this otherpo-
nent is allowed to follow the link to the participant. We cintes
this issue to be part of future work, based on the feedbackewe g
from this first implementation.

8.3 Transaction Resource Model

So far, a transaction only exists explicitly as the requeslylof
a stateless confirm/cancel request towards the coordirftere is
no RESTful resource for it yet. For now, this minimalisticsimn
should be enough to get us the necessary feedback concénring
feasibility and desirability of our approach. Applicatgshould be
able to build a resource-ful model on top of this, and latesieas
of our API should be able to incorporate such additions.

8.4 |1ANA Standardization

So far, we did not achieve standardization at IANA for our-neu
tral MIME types or link relationships because we haven'tfdthe
standards organization that needs to participate in thatfedl like
the MIME types involved should not be vendor-specific (irethe
vnd.* namespace) because we stress interoperability. tHowbhat
leaves the open question of how to avoid collisions in theingm
of the MIME types and thécc link relationship.

8.5 Discovery of Coordinator API

Clients of the coordinators do not need to include hard-dodé
erences to the confirm and cancel URIs of the coordinatoiicgerv
Instead, hypermedia can be used to let them discover thalactu
URIs with aGET request on the coordinator root URI. Hyperlinks
will be returned referring to the confirmation URI (with aKime-
lationshipr el =" confi r m') and to the cancellation URI (with a
link relationshipr el =" cancel "). The standardization of these
link relationships with IANA is currently pending.

9. RELATED WORK

REST is widely perceived as an established lightweightrtekh
ogy for building Web services [20] and Web APIs [19]. The prop
erties of the REST architectural style are meant to ensdriendip-
itous reuse by means of compositj@a].

The idea of RESTful service composition has also been exglor
in the Bite project [2,21], or with the BPEL for REST extenssd15].
All of these contributions to do not explicitly address tleguire-
ment for transactional composition of RESTful services.

In addition to several threads on thest-discussmailing list,
summarized by [8], the problem of transactional interacgifor
RESTful services has started to attract some interest atdw@ire-
search community. A recent survey of RESTful transactiodel®
has been published here [12]. For example, [18] proposegan a
proach to RESTful transactions based on isolation theardhe
RETRO [11] transaction model also complies with the REST ar-
chitectural style. The Timestamp-based Two Phase Comruit Pr
tocol for RESTful Services (TS2PC4RS) algorithm was o@gjin
presented in [3] and extended to deal with fault tolerancf]n
Our approach shares with 2PC the challenge of achieving-a dis
tributed agreement, however we build upon the notion ofriase
tion which fits directly into the business model of the pap@nt
service provider and does not require participants to déhllaw-
level details of running 2PC protocol rounds.

In this paper we presented a RESTful design based on apply-11.

ing the Try-Cancel/Confirm pattern to the design of a RES$éu
vice. The pattern fits with the business requirements of nsamny
vice providers that need to participate within long runniransac-
tions that do not require isolation. Thus, they offer sezsiallow-
ing clients to issue requests triggering state transitionsesource
reservations) which can later be canceled and have to bemmeafi
within a given time window.

(1]

(2]

(3]

These basic assumptions could be weakened. For instance, it

might be that some service providers do not hold resentioie-
wise, it might be that some requests cannot fail under noninal

cumstances (like read-on$ET requests). Further research along

these lines, will help to widen the applicability of tran8ans over

RESTful APIs which do not fully comply with the Try-Cancebifirm

pattern.

An informal proof of the protocol upon which the design pre-

sented in this paper is based was originally published i [LHis
paper adds the concept of having the transaction coordidativ-
ered as a service and presents a detailed RESTful desigts for i
terface and a systematic discussion of its main use cashsding
recovery scenarios.

A browser extension that can intercept participant resenva

URIs as the user navigates between different sites has lreen p

(4]

(5]
(6]

(7]

(8]
El

sented in [16]. The browser extension makes use of an embed-

ded implementation of the coordinator to atomically confamis-
tributed transaction implicitly recorded by tracking thevigation
activities of the browser. Using the API design presentethis
paper, it becomes possible to off-load the confirmation éocibor-
dinator delivered as a service.

10. CONCLUSIONS

In this paper we have given a detailed presentation of a simpl

RESTful design for achieving atomicity in distributed tsactions
involving multiple, separate Web resources that complyhwiite
Try-Cancel/Confirm (TCC) pattern. There are currently twowkn
implementations of the design (one in Java by ATOMIKG®d
another in JavaScript by the University of Lugano). Sincesmlu-
tion does not require any HTTP protocol extension, but caselea
more like a pattern, or a design best practice, we do not fhodn
be standardized per se. However, the design presented ipaper

could grow to become the standard interface of a RESTfuktran

action coordinator delivered as a service. To achieve wasplan

to submit the MIME types and Link relation to IANA. Likewise,

it would be beneficial to provide scaffolding in several laages

and frameworks to make it easier to support the TCC patteenwh

building well-behaved participants. As previously menéd, fu-
ture work also involves dealing with security issues anémding
the coordinator API to support persisting transactionsasurces
in addition to the current stateless approach.

[10]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

While there are already many examples of e-commerce Web site [20]

that provide users with the ability to reserve items for agitime,
we expect similar functionality to be pushed in the corresiiog

Web APIs, which will then require an agreed upon mechanigm fo

advertising the presence of participant links within resm pay-
loads. This will be critical to achieve adoption of our apb,

so that atomic compositions of RESTful services can workhen t

World Wide Web.

[21]

[22]

(23]

REFERENCES

D. Crockford. JSON: The fat-free alternative to XML. Rroc. of
XML 2006 Boston, USA, December 2006.

http://ww. json.org/fatfree. htnl.

F. Curbera, M. Duftler, R. Khalaf, and D. Lovell. Bite: \iidlow
composition for the web. IRroc. of the 5th International Conference
on Service-Oriented Computing (ICSOC 2Q0#ignna, Austria,
2007.

L. A. H. da Silva Maciel and C. M. Hirata. A timestamp-bds&vo
phase commit protocol for Web services using REST architatt
style.Journal of Web Engineerin®(3):266—282, 2010.

R. Fielding.Architectural Styles and The Design of Network-based
Software Architecture$hD thesis, University of California, Irvine,
2000.

M. Fowler. Patterns of Enterprise Application Architecture
Addison-Wesley, November 2002.

Y. Y. Goland, E. J. Whitehead, A. Faizi, S. Carter, and énskn.
HTTP extensions for distributed authoring — WebDAV. Intetrn
RFC 2518, Feb. 1999.

J. Gray. The transaction concept: Virtues and limitaiginvited
paper). InProc.of the Seventh International Conference on Very
Large Data BasesVLDB '81, pages 144-154. VLDB Endowment,
1981.

M. Little. REST and transactions2009.

http://ww. i nfoqg. conl news/ 2009/ 06/ rest -t s.

L. A. H. d. S. Maciel and C. M. Hirata. Fault-tolerant
timestamp-based two-phase commit protocol for RESTfulices.
Software: Practice and Experiencé3(12):1459-1488, 2013.

T. Margaria and M. Hinchey. Simplicity in IT: The powef less.
Computer 46(11):23-25, 2013.

A. Marinos, A. R. Razavi, S. Moschoyiannis, and P. J.usex
RETRO: A consistent and recoverable RESTful transactiodahdn
ICWS 2009pages 181-188, 2009.

N. Mihindukulasooriya, M. E. Gutiérrez, and R. G. Cast8even
challenges for RESTful transaction modelsPimc. of Fifth
International Workshop on RESTful Design (WS-REST 2@D4.
G. PardonTry-Cancel/Confirm: Transactions for (Web) Services
2009.

http://ww. at om kos. com Publ i cati ons/ TryCancel Confirm
G. Pardon and C. Pautasso. Towards distributed atoansactions
over RESTful services. IREST: From Research to Practjgeages
507-524. Springer, 2011.

C. Pautasso. BPEL for REST. Rroc.of the 7th International
Conference on Business Process Management (BPMVIBN,

Italy, September 2008.

C. Pautasso and M. Babazadeh. The atomic web broRsster at
the 22nd International World Wide Web Conference (WWW 2013)
pages 217-218, May 2013.

C. Pautasso and E. Wilde. Why is the Web loosely coupted?
multi-faceted metric for service design.Pmoc. of 18th International

World Wide Web Conference (WWW2Q@®jges 911-920, 2009.

A. R. Razavi, A. Marinos, S. Moschoyiannis, and P. J.usex
RESTHful transactions supported by the isolation theoréms.
ICWE'09, pages 394-409, 2009.

L. Richardson, M. Amundsen, and S. RURESTful Web APls
O'Reilly, September 2013.

L. Richardson and S. RubRESTful Web Service®'Reilly, May
2007.

F. Rosenberg, F. Curbera, M. J. Duftler, and R. Kahatim@osing
RESTful services and collaborative workflowBEE Internet
Computing 12(5):24-31, September-October 2008.

T. Steiner and J. Algermissen. Fulfilling the hypernasecnstraint
via HTTP OPTIONS, the HTTP vocabulary in RDF, and link
headers. IrProc. of the Second International Workshop on RESTful
Design (WS-REST 201Jages 11-14, 2011.

S. Vinoski. Serendipitous reus&EE Internet Computing
12(1):84-87, 2008.

2http: // www. at om kos. coml Mai n/ For Servi ceOri ent edAr chi t ect ures

http://www.atomikos.com/Main/ForServiceOrientedArchitectures
http://www.json.org/fatfree.html
http://www.infoq.com/news/2009/06/rest-ts
http://www.atomikos.com/Publications/TryCancelConfirm

	Introduction
	Assumptions
	Protocol Outline
	Example
	Detailed Protocol Design
	The Basics: Cancel vs Confirm
	Cancel
	Confirm
	Timeout

	Reusing The Hard Bits: Coordinator
	Transaction Coordinator
	Transactions as a Service
	Confirmation
	Failed Confirmation

	Recovery
	Idempotent Confirmation (at the Participant)
	Idempotent Confirmation (at the Coordinator)

	Optimizations
	Participant Cancellation
	Coordinator Cancellation
	Failed Participant Cancellation
	Failed Coordinator Cancellation

	MIME Types
	Participant: application/tcc
	Coordinator: application/tcc+json

	Participant API
	Participant Responsibilities
	Required: time-out and cancel
	Required: participant link
	Required: PUT to confirm
	Optional: DELETE to cancel
	Optional: GET for failure diagnostics

	Coordinator API
	Coordinator Responsibilities
	PUT to confirm
	PUT to cancel

	Discussion
	Application-Level Errors:Cancel after Confirm
	Security
	Transaction Resource Model
	IANA Standardization
	Discovery of Coordinator API

	Related Work
	Conclusions
	References

