REST to JavaScript for Better Client-side Development

Hyunghun Cho
Samsung Electronics
hyunghun.cho@samsung.com

ABSTRACT

In today’s Web-centric era, embedded systems become mashup vari-
ous web services via RESTful web services. RESTful web services
use REST APIs that describe actions as resource state transfers via
standard HTTP methods such as GET, PUT, POST, and DELETE.
While RESTful web services are lightweight and executable on any
platforms that support HTTP methods, writing programs composed
of only such primitive methods is not a familiar concept to develop-
ers. Therefore, no single design strategy for (fully) RESTful APIs
works for arbitrary domains, and current REST APIs are system
dependent, incomplete, and likely to change. To help sever-side
development of REST APIs, several domain-specific languages such
as WADL, WSDL 2.0, and RDF provide automatic tools to generate
REST APIs. However, client-side developers who often do not
know the web services domain and do not understand RESTful web
services suffer from the lack of any development help.

In this paper, we present a new approach to build JavaScript APIs
that are more accessible to client-side developers than REST APIs.
We show a case study of our approach that uses JavaScript APIs
and their wrapper implementation instead of REST APIs, and we
describe the efficiency in the client-side development.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; D.2.11 [Software Engineering]:
Software Architectures—Languages (e.g., description, interconnec-
tion, definition)

Keywords
Web services; API Design; REST API; JavaScript API; Web IDL;
JavaScript wrapper

1. INTRODUCTION

The Web-centric era brings various devices into the world of
Web and connects them via internet. Many embedded systems
and devices consume information from Web servers and produce
information like Web servers. Based on such Web technologies,
Internet of Things (IoT) becomes a new paradigm that connects
various devices to process information and provide services.

To support a variety of devices seamlessly, device vendors pro-
vide Web servers in the RESTful architecture style [3] that is more
lightweight than the conventional Web service style such as SOAP,
WSDL, and UDDI [9]. Following the RESTful architecture style,

Copyright is held by the author/owner(s).
WWW’14 Companion,, April 7-11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04. http://dx.doi.org/10.1145/2567948.2579219.

Sukyoung Ryu
KAIST
sryu.cs@kaist.ac.kr

REST APIs categorize resources using Uniform Resource Identi-
fiers (URIs), HTTP, and standard media types like XML and JSON,
and provide functionalities by using HTTP methods such as GET,
PUT, POST, and DELETE. Because REST APIs couple servers and
clients loosely unlike conventional web services, they can support
richer services consisting of more complex architectures like 3-tier
structures of servers, facades or gateways, and clients.

The simple structure of REST APIs allows embedded systems
to provide convergence services that are not easily possible with
traditional devices. For example, they can support cloud services
that share data between different devices seamlessly without Infras-
tructure as a Service (IaaS) for file storage and synchronization [14],
and they can provide a TV-centric N-Screen Service [16] that can
run on multiple platforms. Also, they can support a service that
controls and monitors various consumer electronic devices remotely
as a home gateway server.

However, the primitive functionalities of REST APIs provide too
low-level abstraction for client-side developers. Most client-side
developers are not familiar with programming high-level logics
in terms of low-level HTTP methods where every functionality is
represented by state transfers of resources denoted by URIs.

In this paper, we present a new approach for client-side developers
to develop client-side web services more easily. To help develop-
ers use their familiar programming styles, we provide JavaScript
APIs to the developers and connect the JavaScript APIs and their
corresponding REST APIs by wrapper implementation. Our case
study of applying the approach to real-world application shows that
the approach reduces the development cost and it also reduces the
necessary changes of client code due to the changes of REST APIs.

The remainder of this paper is organized thus. In Section 2, we
describe why we introduce JavaScript APIs to replace REST APIs
for client-side developers. Section 3 presents our approach to build
JavaScript APIs from REST APIs, Section 4 shows a real-world
case study using the approach. Section 5 discusses related work and
Section 6 concludes with future directions.

2. MOTIVATION

Designing (fully) REST APISs is a challenging task and designing
standardized REST APIs among various devices is even more dif-
ficult. While many design decisions are possible for REST APIs,
no clear guidelines or processes to design good REST APIs are
available. Therefore, often vendors design different APIs for the
same feature. For example, Table 1 shows that different consumer
electronics A, B, and C design APIs differently for the same features.

At the same time, generally designed REST APIs provide good
evolvability and maintainability for server developers but they are
often difficult for client developers to understand and use. The more
attributes a resource has, the more difficult to understand and use

Feature A B C
Retrieving device status /allctrl/status /GetDeviceInfo /sd
Manipulating power status /allctrl/power /SendCommandToDevice /sd
Retrieving power status /allctrl/power /GetDeviceInfo /sd

Retrieving available commands N.A.

/GetCommandListOfDevice /sd

Table 1: Different URI designs of the same features by different consumer electronics

var addr = "http://127.0.0.1/";

function ajaxCall(method, uri, headers, queries,
payload, successCallback,
isAsync) {
var httpObj = new XMLHttpRequest();
var url = addr + uri;
if (queries != null) {
var url = "?" + queries;
}
for (var i = 0; i < headers.length ; i++) {
httpObj.setRequestHeader (headers[i] . param,
headers[i] .value);
}
httpObj.onreadystatechange = function() {
if (httpObj.readyState == 4 &&
xmlhttp.status == 200) {
successCallback(xmlhttp.responseText) ;
}
}
httpObj.open(method, url, isAsync);
httpObj.send(payload) ;

Figure 1: REST API calls with JavaScript Ajax APIs

REST APIs. Because of the characteristics of REST APIs, client
developers should implement actions from resource states either by
creating new related resources or updating existing resources. Thus,
a REST API user should create a resource using the attributes of the
existing resources, but it is not trivial because most REST APIs are
not self descriptive in the sense that REST APIs do not explicitly
describe which attributes are related to other resources. While some
attributes are mandatory that a client should set values explicitly,
REST APIs do not denote such information clearly.

For client developers to understand the application domain and
use REST APIs more easily, we develop JavaScript APIs that are
friendlier to client-side developers than REST APIs. Most web appli-
cations use two kinds of APIs—REST APIs to use server resources
and JavaScript APIs to use client device resources; clients send
and receive messages with servers via REST APIs and hosts use
JavaScript APIs to communicate with clients. For example, Figure 1
illustrates that a JavaScript web application uses Ajax APIs like
XMLHttpRequest to invoke REST APIs. Note that the sixth param-
eter of the ajaxCall function, successCallback, receives a func-
tion as an argument value. Modern web applications use JavaScript
extensively to take advantage of its expressive power. Therefore,
they use corresponding pairs of REST APIs and JavaScript APIs
to communicate between server-side and client-side applications.
In this paper, we present an approach to provide JavaScript APIs
corresponding to REST APIs to enable web applications to maintain
bidirectional communications via JavaScript APIs with server-side
processes as in the WebSocket interface [17].

3. OUR APPROACH

We build object-oriented JavaScript APIs from REST APIs so
that client-side developers can communicate with servers only in
JavaScript. While we can construct JavaScript APIs as one-to-one
correspondence to REST APIs as in Figure 1, such APIs are not
much more useful than REST APIs. Instead, we provide more
reusable object-oriented JavaScript APIs by analyzing the func-
tionalities of REST APIs. The following steps describe a general
mechanism to design JavaScript APIs from REST APIs:

1. Collect use cases of a REST API. Often programming guide-
lines of REST APIs provide usage examples of REST APIs.

2. Extract possible states of a client and the state relationships.
Because REST APIs do not keep client states in a server,
clients should keep their state information, which allows us
to extract client states and state transition conditions in a
straightforward way. First, when a URI provides a GET
method, name the state of the corresponding resource accord-
ingly. When the attributes of the state are referred by POST,
PUT, and DELETE methods of other REST APIs, extract the
relationships between states. Also, because URIs make a re-
source hierarchy, extract the relationships that lower resources
in the hierarchy exist only when higher resources do.

3. Introduce an entity that is responsible for the extracted states
and their transitions. According to the object-oriented design
principles [7], name an interface as a logical object that may
have states as their instances or refer them. One interface may
have multiple states but we follow the Single Responsibility
Principle that assigns one state to one interface.

4. Add state transitions as methods to the introduced entity. To
name the methods, consult the REST APIs which use POST,
PUT, and DELETE methods for the create, update, and delete
methods, respectively.

5. Make the number of method parameters smaller than the pa-
rameter number of the corresponding REST API. A REST
API can have parameters in several ways: 1) as a part of a URI
like /api/resources/resourceldValue, 2) as a query ar-
gument like /api/resource?parameter=value, 3) as a
parameter of a custom HTTP header, and 4) as a JSON con-
tent as shown in Figure 2 collectively. The design principles of
REST APIs [11] recommend to use URI or header parameters
for general-purpose attributes, query arguments for attributes
corresponding to auxiliary functions, and JSON contents for
other kinds of attributes. Therefore, we decide whether to
map the parameters of REST APIs either to attributes of
entities or to method parameters in JavaScript APIs accord-
ing to the principles. We allow reuses of general-purpose
attributes by introducing separate interfaces, map auxiliary at-
tributes to methods’ optional parameters, and other attributes
to mandatory parameters. Because too many method param-
eters degrade the usability of APIs, we introduce interfaces

PUT http://127.0.0.1/api/foos/resourceld?queryl=valuel&query2=value2

Accept: application/json
Header-Paraml : headerValuel
Header-Param2 : headerValue2

{ bodyParami :
bodyParam2 :

"bodyValuel",
"bodyValue2" }

HTTP/1.1

Figure 2: Sample REST API request

[Constructor (DOMString id, HeaderParams headers)]

interface Foo {
readonly attribute DOMString id;

readonly attribute HeaderParams headers;
// grouped JSON data as the BodyParams dictionary

void update(BodyParams params,

optional DOMString queryl,
optional DOMString query2);

};

// originated from resourceld

// originated from queryl
// originated from query2

[Constructor (DOMString headerl, DOMString header2)]

interface HeaderParams {

DOMString headerl; // originated from Header-Paraml
DOMString header2; // originated from Header-Param?2

};

dictionary BodyParams {

attribute DOMString paraml; // originated from bodyParami
attribute DOMString param2; // originated from bodyParam2

};

Figure 3: JavaScript API corresponding to the REST API in Figure 2 written in Web IDL

var foo = new Foo("resourceId", new HeaderParams("headerValuel", "headerValue2"));

foo.update ({
paraml : "bodyValuel",
param2 : "bodyValue2"
}, valuel, value2);

Figure 4: Sample use of the JavaScript API in Figure 3 in JavaScript

that contain similar attributes and use such interfaces as pa-
rameters. Figure 3 presents an example JavaScript API design
corresponding to the REST API request in Figure 2 and Fig-
ure 4 shows a sample use of the JavaScript API in JavaScript.

After designing the structure of JavaScript APIs, we refine the
APIs in an interface description language. In our mechanism, we
use Web IDL [8] to describe JavaScript APIs because Web IDL
comes with useful tools such as widlproc [10], an open-source
tool that converts APIs in Web IDL into XML formats to validate
the APIs and to enable automatic generation of stub codes and
JavaScript APIs specifications. Figure 3 shows an example Web
IDL description of a JavaScript APIL.

Then, we implement wrappers that map REST APIs to JavaScript
APIs. While we can use any implementation language for the wrap-
pers depending on web platforms that provide JavaScript APIs, we
use JavaScript as an implementation language so that we can reuse
the wrappers in multiple web platforms. We implement wrappers
using the JavaScript Ajax APIs as shown in Figure 1.

Finally, we refine the constructed JavaScript APIs iteratively by
replacing the uses of REST APIs with the JavaScript APIs incre-
mentally. Instead of designing the entire functionalities of existing
REST APIs at once, we design JavaScript APIs corresponding to a
core subset of the REST APIs first, check and revise the designed
JavaScript APIs, and add more functionalities iteratively.

TV (host] Mobile (client)|

L5 B T

e o) e

Figure 5: System architecture of the N-Service API

4. CASE STUDY

In this section, we show a real-world case study of our approach
described in Section 3 in detail. We use one of the convergence ap-
plication APIs provided by Samsung Smart TV to illustrate how we
convert REST APIs to JavaScript APIs so that we provide JavaScript
APIs both to hosts and clients seamlessly. The TV convergence
application API (a.k.a N-Service) provides an interface for inter-
application communication, which allows Smart TVs incorporating
web platforms and nearby mobile devices to develop N-Screen ser-
vices together. In existing approaches, applications on Smart TVs
provide JavaScript APIs for the functionalities of a host, and ap-
plications on mobile devices use REST APIs provided by Smart
TVs. On the contrary, using our approach, both clients and hosts
use JavaScript APIs to implement their applications as shown in

Method URI

Use case

POST /ws/apps/{appIld}/connect

POST /ws/apps/{appId}/disconnect

GET /ws/apps/{appld}/info

POST /ws/apps/{appId}/queue

GET /ws/apps/{appld}/queue/devices/{deviceld}
POST /ws/apps/{appld}/queue/devices/{deviceId}
POST /ws/apps/{appld}/queue/groups/{groupId}
GET /ws/apps/{appld}/queue/groups/{groupId}

POST /ws/apps/{appId}/queue/groups/{groupIld}/join
POST /ws/apps/{appIld}/queue/groups/{groupld}/leave

connect to a host application

disconnect from a host application

get the information of a host application

push a message to a host application or upload a file

pop a message of a specific client device from a host application
push a message to a specific client device

push a message to a specific group

retrieve group members

join a group

leave a group

Table 2: List of REST APIs for clients (excerpt)

Interface

Attribute/Method

NServiceDeviceManager

void getNServiceDevices(successCallback, errorCallback)

Get a client device object NServiceDevice connected to a host

void registerManagerCallback(callbackFn(ManagerEvent))
Register a callback function that receives events like client connections and disconnections

Number broadcastMessage(DOMString message)
Send a message to all the clients connected to a host

Number multicastMessage(DOMString groupID, DOMString messasge)

Send a message to a group

NServiceDevice DOMString getUniqueID() Get the unique id of a client

DOMString getDeviceID() Get the device id of a client

DOMString getName () Get the name of a client

Number getType() Get the type of a client

Number sendMessage(DOMString message) Send a message to a client

void registerDeviceCallback(callbackFn(NServiceDeviceEventInfo))

Register a callback function that receives messages sent by a client from a server

void unregisterDeviceCallback()

Unregister a callback function that receives messages sent by a client
ManagerEvent Number eventType Type of an event like connection and disconnection
ManagerEvent DOMString deviceName Name of a client that signals an event
ManagerEvent DOMString uniquelID Unique id of a client that signals an event
ManagerEvent Number deviceType Type of a client that signals an event

NServiceDeviceEventInfo Number eventType

Type of an event like sending a message and leaving a group

NServiceDeviceMessageInfo eventData or NServiceDeviceGroupInfo eventData

Message content

NServiceDeviceGroupInfo DOMString groupName

Group name that a client joins or leaves

DOMString message

NServiceDeviceMessageInfo DOMString context

Message sent by a client
Context sent by a client

Table 3: List of JavaScript APIs for hosts (excerpt)

/ info

/ connect h@ / disconnect
‘ host application @

/ queue
/ join
(message queue |_ /leave | group]
\ . /\ /\(rou &
pld}
Y eien €

Figure 6: State diagram from use cases

POST /ws/app/sampleWidget/connect HTTP/1.1
SLDeviceID: 12345

VendorID: VenderMe

DeviceName: IE-Client

ProductID: SMARTDev

Figure 7: N-Service REST API (excerpt)

Figure 5. The resulting JavaScript APIs of our case study are open
to the public at the Samsung developer site [15], and anyone can use
them on Android.

According to the steps to design JavaScript APIs from REST APIs
specified in Section 3, we first collect use cases of REST APIs from
programming guidelines to understand their functionalities. Gener-
ally, REST APIs often come with documentation that describes their
intended uses, and a Samsung development guide provides such a
guideline for client to TV application communication [12]. Table 2
shows a list of REST API use cases where {appId}, {deviceId},
and {groupId} denote the id of a host application, the id of a
connected device to a host, and id of a generated group, respectively.

In the second step, we extract possible states of a client and
the state relationships as illustrated in Figure 6. Following the
general mechanism, name the states received by GET methods in
Table 2 host application, message queue, and group, and
map the REST APIs to transit between the states. Because queue
and groups exist under {appid} in the URI hierarchy, we reflect
the relationships in the transitions shown in the state diagram.

The third step introduces entities that are responsible for the states
and their transitions. From a guideline of JavaScript APIs for host ap-
plications [13] shown in Table 3, introduce necessary entities while
preferring to reuse existing entities rather than to introduce new en-
tities. We chose to introduce a new NServiceHost interface to take
care of host applications, and to reuse existing NServiceManager,
NServiceDeviceGroup, and NServiceDevice interfaces to man-
age message queues and groups.

The fourth step designs methods for state transitions. For this case
study, we can introduce JavaScript methods for the edge labels in
Figure 6 connect, disconnect, info, queue, join, and leave.
Because client applications invoke REST APIs by Ajax APIs, we
design the methods as asynchronous functions by using success
callback functions and error callback functions as parameters.

Finally, the fifth step determines method parameters according
to the parameter kinds of the corresponding REST APIs. Because
REST APIs often use many parameters, we introduce new inter-
faces that contain similar attributes and use them as parameters.
For example, among the parameters shown in Figure 7, an ex-
cerpt from the N-Service REST API, we encapsulate the appli-

; | [OOwEgGERD—] o [imigned oot sonthamter i
| sl T ool [S— L speshe Y
oo srrg mevoge || (DOMSN 4
: EBCuSting phine

sgetOwmDevieintol)
+connectNServiceHost(n

Figure 8: ER diagram of the N-Service API

. Mobile client side TV host side .

[mseniceownpeviceinfo | [se ‘

[Mservicesever | [NServiceManager |

0 7
! [NserviceDevice |
b ~

[MServiceHostinfo | [mservicettost |

N-Service:zmobile app N-Service:TV app

Init. object

i NServiceOwnDevicelnfo Object
H e

setOwnDevicelnfo(object)

T
i
|
| registerMessageCallback()

Initiate the object H
+ set mandatory parameters
NServiceHostinfo Object
mmmmmmm— oo

connectNServiceHost(object) POST
. L PP

i
NServiceHost Object Pt onevent(CONNECT)
T

______________________ INotify connect
| getNServiceDevices()

d
Request connected devices
! ;
nit. objecti - \ServiceDevice Object

Figure 9: API sequence flow of the N-Service

cation id sampleWidget and the header parameters SLDeviceID,
VendorID, DeviceName, and ProductID in newly introduced inter-
faces NServiceHostInfo and NServiceOwnDeviceInfo as their
attributes appropriately.

The ER diagram between client APIs and host APIs in Fig-
ure 8 shows that both APIs work seamlessly in JavaScript. The
common I/F boxes denote the interfaces that already existed in host
applications and reused or extended for client applications, and the
client specific I/F boxes denote newly introduced interfaces
for clients. As the common API boxes show, both clients and hosts
can use the same JavaScript APIs. To check the validity of the
designed JavaScript APIs, we use sequence flows that illustrate API
call flows. Figure 9 describes a valid order of JavaScript API calls
for a part of the APIs shown in Figure 8.

We refine the designed APIs in Web IDL as in Figure 10. The
detailed description of the APIs in an interface description language
enables to validate the completeness of APIs and to generate docu-
mentation of them automatically by various tools.

Then, we implement wrappers that provide JavaScript APIs de-
fined in Figure 10. The generated interfaces and API descriptions
guide how to implement wrappers, but we should check security
policies of web applications on target platforms. Also, because vari-
ous platforms including web browsers, Android platforms, Tizen,
and Firefox OS, the implementation language may depend on target
platforms. While testing sample client applications that use wrap-
pers, we found one security issue with wrappers. Because many
platforms use the same origin policy to avoid the security vulnerabil-
ity by cross-site scripting, client applications using wrappers cannot
call REST APIs as Ajax calls because REST APIs and wrappers are

[Constructor (NServiceOwnDeviceInfoInit init)]
interface NServiceOwnDeviceInfo {

attribute DOMString devicelD;

attribute DOMString vendorID;

attribute DOMString deviceName;

attribute DOMString productID;
};

[Constructor (NServiceHostInfolnit init)]
interface NServiceHostInfo {
attribute DOMString ipAddress;
attribute unsigned short portNumber;
attribute DOMString appID;
readonly attribute DOMString? version;
readonly attribute DOMString? appName;
readonly attribute NServiceHostStatus status;

};

[NoInterfaceObject] interface NServiceManager {
boolean setOwnDeviceInfo(
NServiceOwnDeviceInfo info);
NServiceOwnDeviceInfo? getOwnDeviceInfo();
void connectNServiceHost (
NServiceHostInfo hostInfo,
NServiceHostConnectSuccessCallback onsuccess,
optional ErrorCallback? onerror);

Figure 10: N-Service API in Web IDL

in different domains. To solve the problem, we made the web server
providing REST APIs use the W3C standard Cross Origin Resource
Sharing (CORS) [6].

While we did not evaluate the efficiency of using JavaScript APIs
compared to REST APIs quantitatively, we found that JavaScript
APIs lowered the entry barrier of client developers that they develop
more various web applications using the JavaScript APIs. Such ap-
plications including Colapicto, Draw Together, Family album, Con-
tinuous Youtube play, and Puzzle game are publicly available [15].

With the case study described in this section and other case studies
in progress, we learned the following lessons:

e We found a security issue with the REST API design and
resolved it using the W3C standard mechanism.

e The object-oriented JavaScript APIs are more usable than
REST APIs based on state manipulation.

e The client code using JavaScript APIs are more readable than
directly invoking REST APIs in JavaScript.

e The JavaScript APIs provide reasonable documentation as
programming guidelines because of their structure based on
state transitions.

e We could test the APIs more effectively using JavaScript only
code and APIs.

S. RELATED WORK

In this paper, we focus on REST APIs without any support for
“hypermedia” and “code-on-demand.” According to the Richardson
Maturity Model [4] that grades RESTfulness of REST APIs, the
target REST APIs of this paper are at Level 2 relying on HTTP verbs
and, Level 3 with Hypermedia Controls requires support for hyper
media types. Because REST APIs at Level 3 are self descriptive,
they are readily applicable to automatically generate client code
using Collection+JSON [1] and HAL [2], for example. While up-
grading the maturity level of REST APIs for embedded systems may

be one way to leverage REST APIs, we suggest an alternative way
to provide services and improve them under the current restrictions
of embedded systems without changing them.

6. CONCLUSION

We present an approach to enhance the productivity of client de-
velopers by providing JavaScript APIs instead of REST APIs that are
not familiar to client developers. We describe a general mechanism
to design JavaScript APIs from REST APIs systematically and spec-
ify the JavaScript APIs in Web IDL to enable automatic validation
and documentation generation. A real-world case study demon-
strates that our approach is practically applicable and improves
programmability of client developers. We believe that JavaScript
APIs are more adaptable to future changes in REST APIs so that
JavaScript developers can maintain their code more easily.

We plan to improve our mechanism based on our experiences with
case studies. We will implement a tool to automatically generate
stub code from JavaScript API descriptions written in Web IDL
with annotations for REST APIs using widlproc. We also plan to
detect misuses of JavaScript APIs due to the changes of REST APIs
to make the adjustments of the wrapper implementation effective.
Finally, we will apply the mechanism not only to clients but also for
servers such as Node.JS [5].

7. ACKNOWLEDGMENTS

We thank the Samsung Web API team members for the case study con-
ducted together and their helpful comments on earlier versions of this paper.
This work is supported in part by Korea Ministry of Education, Science and
Technology(MEST) / National Research Foundation of Korea(NRF) (Grants
NRF-2011-0016139 and NRF-2008-0062609) and Samsung Electronics.

8. REFERENCES
[1] Amundsen, M.: Collection+JSON.
https://github.com/collection-json
[2] Chambrier, N.: Hypertext application language.
https://hpmjs.org/package/hal

Fielding, R.T.: Architectural styles and the design of network-based

software architectures. Ph.D. thesis, University of California, Irvine

(2000)

Fowler, M.: Richardson maturity model. http://martinfowler.

com/articles/richardsonMaturityModel.html/

[5] Joyent: Node.js. http://nodejs.org/

[6] van Kesteren, A.: Cross-origin resource sharing.

http://www.w3.org/TR/cors/

Martin, R.C.: Principles of object oriented design. http:

//c2.com/cgi/wiki?Principles0f0ObjectOrientedDesign

McCormack, C.: Web interface definition language.

http://www.w3.org/TR/WebIDL

Moller, A., Schwartzbach, M.I.: An Introduction to XML and Web

Technologies. Addison-Wesley (2006)

[10] Renouf, T., Byers, P.: widlproc.
https://github.com/dontcallmedom/widlproc

[11] Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media
(2007)

[12] Samsung: Client (HHP) to TV application communication.
http://www.samsungdforum.com/Guide/ref00003/
convergence_app_clienttotvappcomm.html

[13] Samsung: Nservice. http://www.samsungdforum.com/Guide/
ref00008/nservice/dtv_nservice.html

[14] Samsung: Samsung Link. http://link.samsung. com

[15] Samsung: Samsung Web API.
http://developer.samsung.com/samsung-web-api

[16] Samsung: Smart TV Convergence App APIL http:

//www . samsungdforum. com/Guide/ref00003/index . html

[17] W3C: The WebSocket API.
http://wuw.w3.org/TR/websockets/

3

—

[4

=

[7

—

[8

=

[9

—

https://github.com/collection-json
https://hpmjs.org/package/hal
http://martinfowler.com/articles/richardsonMaturityModel.html/
http://martinfowler.com/articles/richardsonMaturityModel.html/
http://nodejs.org/
http://www.w3.org/TR/cors/
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://c2.com/cgi/wiki?PrinciplesOfObjectOrientedDesign
http://www.w3.org/TR/WebIDL
https://github.com/dontcallmedom/widlproc
http://www.samsungdforum.com/Guide/ref00003/convergence_app_clienttotvappcomm.html
http://www.samsungdforum.com/Guide/ref00003/convergence_app_clienttotvappcomm.html
http://www.samsungdforum.com/Guide/ref00008/nservice/dtv_nservice.html
http://www.samsungdforum.com/Guide/ref00008/nservice/dtv_nservice.html
http://link.samsung.com
http://developer.samsung.com/samsung-web-api
http://www.samsungdforum.com/Guide/ref00003/index.html
http://www.samsungdforum.com/Guide/ref00003/index.html
http://www.w3.org/TR/websockets/

	Introduction
	Motivation
	Our Approach
	Case Study
	Related Work
	Conclusion
	Acknowledgments
	References

