
Case Study: Extracting a Resource Model from an
Object-Oriented Legacy Application

Christoph Szymaǹski
SAP AG

69190 Walldorf, Germany
christoph.szymanski@sap.com

Silvia Schreier
Chair of Data Processing Technology

University of Hagen
silvia.schreier@fernuni-hagen.de

ABSTRACT
Many companies have invested in legacy applications and
want to benefit from the interoperability that the archi-
tectural style Representational State Transfer (REST) of-
fers without redeveloping their software. One of the crucial
parts when adding a REST interface to an existing appli-
cation is creating an appropriate resource model. Utiliz-
ing any available model of the legacy application can ac-
celerate development significantly because existing domain
knowledge, data, and business process implementations can
be reused. Despite the maturity of the architectural style,
there is still little record of creating a resource model from
existing object-oriented applications. This article presents a
lightweight modeling process: First we harvest an existing
object model for resource candidates, afterwards the result-
ing model is enhanced incrementally until a suitable resource
model emerges. The process is illustrated by a case study
that highlights interesting challenges, such as a comprehen-
sive domain model and long running processes, as well as
pragmatic solutions for these challenges. The paper demon-
strates that it is feasible to add a RESTful interface to a
legacy application even in a process rich environment.

1. INTRODUCTION
In many companies there is an urge to expose the data

and the processes of legacy applications as web services. In
the last years RESTful web services have become a common
choice because of their inherent interoperability, scalability,
and the use of the Hypertext Transfer Protocol (HTTP) [8].
Accordingly, the need to efficiently produce dependable re-
source models to build good RESTful APIs becomes increas-
ingly imperative.

There is work on resource modeling directly from a prob-
lem domain [6, 7], but many legacy applications already
have well defined and documented models. Applications
programmed in the object-oriented paradigm have an object
model that provides a solid basis for a resource model. While
at a first glance the transformation of an object model to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2012, April 2012; Lyon, France
Copyright 2012 ACM 978-1-4503-1190-8/12/04 ...$10.00.

resource model seems trivial, because both deal with entities
and message exchange, the paradigms differ in some key as-
pects. The uniform interface of a resource model probably
being the most significant: In HTTP there is only a lim-
ited and standardized set of methods with fixed semantics
available and also the messages themselves are defined, e. g.,
using media types and standardized return codes. Another
difference lies in the relationships between entities. Object
relationships are usually carefully analyzed to avoid unnec-
essary coupling. In contrast, the Hypermedia as the Engine
of Application State (HATEOAS) principle [4] in RESTful
designs depends on rich linking between resources to facil-
itate easy service traversal and good connectivity between
different services. As a result the focus during the modeling
phase moves from defining object method signatures and re-
lationships to designing the resource state and the messages
used for communication between client and server.

The legacy application in this case study—the Virtual In-
frastructure Management (VIM) Portal—is an internal web
application at SAP. It has been developed to administrate
and monitor a large number of virtual machines (VMs) used
in various stages of the software engineering process. These
VMs are used for testing, debugging, hosting build tools,
and as training systems. VMs are suitable for these scenar-
ios because they can be easily reset, deployed quickly, and
teams in different timezones can utilize the underlying hard-
ware effectively. The VIM Portal is programmed in PHP
using the language’s object-oriented features1. The subject
of the case study is to document the creation of a resource
model for the VIM Portal using its object model. We use
this resource model for implementing a RESTful API, which
replaces a set of non-standard legacy web services. The goal
of the new API is to expose existing VIM Portal features
primarily for future automated clients.

After introducing related research in the next section, we
introduce the case study and motivation for a RESTful API
in Section 3. The suggested transformation from object-
to resource-oriented models is described in Section 4 and
illustrated with examples from the case study. We conclude
this article with our findings and challenges for future work.

2. RELATED WORK
Different approaches and case studies exist about trans-

forming legacy applications to RESTful APIs. Engelke and
Fitzgerald [3] describe why and how an existing legacy ap-
plication for Internet bidding has been generalized and re-
placed by a RESTful API. They focus on authentication and

1http://www.php.net/manual/en/language.oop5.php

http://www.php.net/manual/en/language.oop5.php

D
o

m
a

in
 O

b
je

c
t

L
a

y
e

r

C
o

m
m

a
n

d

L
a

y
e

r

VirtualEntity

VirtualEntityGroup

VmUsage

*

1

1

1

*

*

CommandReserveVm CommandReleaseVm

1

11

CommandBackupCommandCloneOnDemand

1

1
1 1

CommandRollout

RolloutMaster
1

0..1

1

Figure 1: Detail of the object-oriented source model showing several commands and their relationships with domain objects.

security issues and the service offers only CRUD operations.
Instead of reusing existing implementations they designed a
new protocol and implemented it in different languages. The
case study of Fuentes-Lorenzo [5] provides insights on how
existing data can be managed using RESTful web services.
Again the focus is on data-centric CRUD operations.

Liu et al. [7] describe a common process for re-engineering
legacy systems to RESTful services which is focused on data-
or entity-driven systems. They identify resource granular-
ity as the key problem and focus very much on the Uni-
form Resource Identifier (URI) design. Their process is not
bound to any particular source model. Parts of their pro-
cess have been used to derive the process presented in this
work, but handling of complex and long running processes
had to be added. Some work has been done on modeling
resource-oriented applications: Laitkorpi et al. [6] present
a model-driven process for RESTful Services starting with
a functional specification and not an existing system. They
focus on sequence diagrams and the communication between
server and client to extract the resources instead of analyz-
ing object models.

Tilkov [10] provides ideas for resource classification used
in this work. Some aspects from Tilkov’s book are also dis-
cussed in [9] where the classification is being incorporated in
a more complete metamodel for resource-oriented models.

3. THE CASE STUDY
After introducing the VIM Portal and some of its use

cases, we outline the requirements and reason why a REST-
ful HTTP based implementation would meet the demands.

3.1 The VIM Portal
The VIM Portal provides a web interface to access VMs

hosted on a distributed virtual infrastructure (VI) provided
by third party vendors. To share a more detailed view we
describe two typical use cases of the application briefly.

The first is the most common interaction of a user with
the VI: Using a VM includes locating a suitable VM in the
system, starting it on the VI, and registering it as being
used to ensure exclusive use for this user. After finishing
work on the VM it is released, i. e., stopped and the usage
is canceled. For later reference we call this use case UC1.

The second use case is an administrative task (UC2). A
configured master VM can be replicated to several clones.
Such a roll out is used by designated service teams which
install the latest version of a software on such a master VM

which is then being rolled out to a number of VMs that can
be utilized by other team members.

Figure 1 shows parts of the legacy application’s object
model with focus on the details needed during modeling. It
is arranged around the class VirtualEntity, which repre-
sents a VM, some adjacent domain classes, and commands.
CommandRollout implements the task of mass cloning a VM
acting as RolloutMaster (UC2). The normal usage data
of a VM is available in VmUsage. Reserving and releasing
a VM (see UC1) is modeled in two commands, Command-

ReserveVm and CommandReleaseVm. VMs can be organized
in VirtualEntityGroups, which are used to configure usage
restrictions.

These classes are embedded in the domain object layer
and the command layer. The VIM Portal’s layers are de-
scribed in more detail in Figure 2. Domain Objects provide
operations to access entity data in the persistence layer as
well as entity specific domain logic. Domain objects are used
in the adjacent view and service layers. Services encapsu-
late meaningful processes that can be combined and used in
complex commands. Commands act as the request target
for clients to execute an action. Commands control the exe-
cution by checking prerequisite and creating domain objects
used in the process. Furthermore, they can set up process
logging and use the application’s Access Control List (ACL)
to authorize the client.

3.2 Challenges
Several challenges had to be considered designing the new

web service. One goal was to reuse existing code and busi-
ness logic which has been running reliably for years. Another
early decision was to reuse infrastructural features like the
ACLs for authorization and HTTPS for authentication.

After collecting the requirements from existing and po-
tential users of the service we decided to use a media-type
agnostic architecture: Whereas most clients are able to pro-
duce and consume any flavor of XML for communication,
there are web clients—including the VIM Portal’s web UI
itself—that prefer to consume JSON for AJAX calls. Ex-
tendability to serve any format in the future had to be taken
into account.

Furthermore, migration of existing clients and the creation
of additional clients in different programming languages and
environments has to be made as easy as possible. A light-
weight architecture and protocol with library support in the
most common programming languages is necessary.

Figure 2: VIM Portal application layers as the source of resource candidates.

The new web service would have to support long running
tasks as well, which is one of the most important require-
ments in a business domain heavily depending on slow ex-
ternal resources.

3.3 RESTful HTTP
The REST architectural style fits the requirements, most

notably the benefits deducible directly from Fielding’s ar-
chitectural constraints [4]: Scalability is required, namely by
caching and distributing the service across multiple servers
because the application manages more than 4,000 virtual
machines for corporate wide access and is still growing. Data
from slow external source like the VI must be cached to
reduce requests and avoid performance problems. Conse-
quently, all server responses should make use of cache con-
trol header information to give clients a hint how long the
data is valid.

New features need to be added to the VIM Portal regu-
larly, requiring that the web service supports modifiability
in several ways. The uniform interface, i. e., the elements of
HTTP, self documenting resources and hypermedia as the
engine of application state will simplify the service’s con-
sumption, thus encouraging the creation of clients and the
reuse of data and processes.

4. MODELING PROCESS
First we introduce and motivate a few assumptions prior

to modeling. Afterwards the modeling process is described.
Examples and experiences from the case study accompany
the modeling steps.

4.1 Early Modeling Considerations
We assume that it is beneficial for implementation and

modeling to classify the resources. Using resource types
makes implementation and documentation of the resources
easier by revealing their structural function. Most of the re-
source types introduced in Tilkov [10] are used during mod-
eling: Primary resources are entities in the business domain,
similar to domain objects in classic software design. Subre-
sources are part of a primary resource. List resources are
used for listing and creating new resources. They can be
paged and filtered because of potentially large result sets.
Activity resources model business processes and tasks.

The VIM Portal’s layers are described in Figure 2. The
command layer is the source for activity resource candidates,

because one commands encapsulates one action in all user
work flows. User authorization to execute commands is man-
aged in the application’s ACL. The services on the other
hand implement single steps which can be reused and com-
bined in complex commands. Services can not be consumed
by a client directly. Primary and subresource candidates
are extracted from the domain object layer. An alternate
source for resources is the view layer because it reveals what
data needs to be published. The domain layer has been cho-
sen instead because the extraction can be automated more
easily.

4.1.1 Primary Resources
Central domain entities of the application are classified

as primary resources. They provide the most basic and fre-
quently accessed entity data.

All primary resources are supplemented with a list re-
source. We use the common practice to create resources by
sending a POST message to the corresponding list [1, 10].

4.1.2 Subresources
Subresources are modeled depending on various factors:

One indicator is the object relationship in the source model.
If the relationship of two objects is a composition, then one
is modeled as a subresource of the other. In Liu et al. [7]
there is an interesting approach to generate URIs from rela-
tionship types. In contrast our approach is less sophisticated
and not directly aimed at generating URIs but to indicate
resource types.

Another factor to consider is that data semantically be-
longing to one resource is sometimes better distributed over
separate resources if the data requires different cache set-
tings. This can be the case if a resource consists of data
from different sources, e. g., from a slow external source like
the VI in this case study and a fast database.

4.1.3 Activity Resources
Many process-rich web applications feature a service layer

implementing business processes. It is expected to be one
of the major challenges to map those processes canonically
to the concrete resource candidates. For example, there are
several processes creating new VMs, but only one of them
can be mapped to the POST operation of the correspond-
ing list resource. Besides, these processes differ too much
semantically to just distinguish them by the request repre-

sentation.
We decide to handle long running processes asynchro-

nously allowing the client to get an immediate response. We
create separate activity resources for this purpose: The cre-
ation of an activity provides the client with the location of
the new activity which can be used to monitor the progress
of the tasks.

4.2 Modeling Steps
Liu et al. [7] address key problems that arise during the

creation of RESTful resource models from legacy applica-
tions: Identifying resources, mapping services to the HTTP
verbs, URI design considerations and API description. We
take elements from their approach [7] and metamodel ele-
ments [9] and combine these into a simple modeling strategy.
The modeling process consists of four phases: Identification
and extraction of resource candidates, refining the model,
consolidation of activities and a final step of validation in-
cluding the design of an entry resource. In contrast to Liu
et al. [7], we treat URI design as a secondary task because
the URI can be deducted from the resulting resource model
easily.

4.2.1 Extraction of Resource Candidates
In a simple examination the resource candidates are ex-

tracted from the source model. Domain classes are consid-
ered for primary resources, subresources and lists, classes
from the command layer for activities. Each resource can-
didate’s relevance for the resource model is discussed with
stakeholders with regard to existing and future clients of
the new API. As a result, all classes in Figure 1 are used
as resource candidates for the resource model. Only very
few domain classes are omitted, most of them representing
technical details which are used in the application’s internal
processes without user interaction.

In this case study 27 activity resource candidates and most
of the source model’s domain classes have been carried over
to the preliminary resource model. All primary resources
received an additional list resource. During the extraction
from the source model the object relationships were pre-
served to serve as links in the resource model.

4.2.2 Refining the Model
During this step the partitioning of the resources is re-

viewed. Some resources need to be split, some containing
only little information need to be integrated. After these
changes the names of the resource candidates need to be
changed. Lowercase resource names instead of CamelCase
emphasize the transition to the resource paradigm and are
considered more URI-friendly.

Figure 3a shows that the information regarding a vir-

tual-entity resource is split across various subresources:
Whereas most basic data remains with the primary resource,
details and platform information have their own resource
because they are only required in special use cases. The
network information is also split off the primary resource
because collecting this information involves slow external de-
pendencies like the VI and company network services. This
avoids fetching the data when it is not required by the client.
Additionally, using different cache control headers on expen-
sive resources to indicate longer cache entry life time can
improve client performance and save server resources.

Relationships between resources are not treated as restric-

virtual-entity

virtual-entity-details

virtual-entity-platform

virtual-entity-network

virtual-entity-list

(a) Model of virtual-entity and its list- and subre-
sources.

virtual-entity

group

GET

DELETE

usage

POST

GET

usage-list

(b) The processes from UC1 are mapped to POST /usage
and DELETE /usage/{id}.

virtual-entity

POST

GET

backup-activity

POST

GET

clone-activity

(c) Two of the remaining activities.

Figure 3: Resources and links from the VIM Portal model.

tively as in object-oriented models. Short navigational paths
for clients are preferred. All links between resources in this
case study are by default bidirectional to provide many op-
tions to traverse the resource graph quickly.

There is a possible feedback loop from this phase to the
object-oriented source model: If a lot of renaming or split-
ting and merging of resources is necessary and the changes
are not merely indicated by REST requirements, these chan-
ges should be applied to the source model as well.

4.2.3 Consolidation of Activities
In this phase we try to map as many activities as pos-

sible to a resource’s request methods. Only the remaining
activities are modeled as activity resources.

Many of the VIM Portal’s processes are simple CRUD
operations on a database and can be mapped to the HTTP
verbs easily. The remaining processes interact with vari-
ous subsystems of the VI and are therefore potentially long-
running. From the 27 activity resource candidates all but
three could be attached to an appropriate request method of
a concrete resource, e. g., CommandReserveVm and Command-

ReleaseVm in Figure 1. These two legacy command classes
implement parts of UC1 (see Subsection 3.1), and both can
be mapped to POST /usage/ and DELETE /usage/{id} re-
spectively as shown in Figure 3b.

The three remaining resources are long running cloning
tasks, e. g., the commands CommandCloneOnDemand and Com-

mandBackup from the source model (see Figure 1) and are
represented as activity resources in Figure 3c. The class
CommandRollout in Figure 1 is part of UC2 (see Subsec-
tion 3.1). Since this process needs asynchronous processing,

Relation Name Usage

self Refers to the current document.
up Used in subresources to link to its

primary resource.
next, previous Paging list resources.
help Providing human readable resource

help.

Table 1: Examples of IANA link relations reused in the VIM
Portal.

it is modeled as an activity resource as well.
These results indicate that few HTTP verbs suffice to cre-

ate a process rich and expressive interface.

4.2.4 Finalizing the Model
Similar to a service description in traditional web service

architectures we model an entry resource. This resource
provides useful links to different areas of the service.

Finally, we verify that all modeled resources are connected
and reachable from the entry resource. Early feedback from
stakeholders indicated that some paths between resources
were too long. To rectify this, additional links between re-
sources are introduced where necessary.

4.2.5 URI Design
As we expect mostly automated clients, we set out for sim-

ple, yet comprehensible URIs. Readable URIs are important
to help developers and other human users understand basic
resource and relationship semantics when exploring the ser-
vice.

The lowercase, hyphen-separated resource names from the
model are also used in the URIs. To identify a resource the
unique identifier is appended to the resource name (/{re-
source}/{id}), reusing the database keys of the base appli-
cation, which guarantees their uniqueness. This URI design
is used for primary and activity resources. Subresource URIs
have been designed to emphasize the relation to their pri-
mary resource, e. g., for the subresource virtual-entity-

network from Figure 3a: /virtual-entity/{id}/network

Lists are represented by the URI of their respective pri-
mary resource without the trailing identifier string. To en-
able filtering and paging the URI query component [2] is
utilized:
/{list}?page={number}&{filter-key}={filter-value}

4.2.6 Link Relations and Media Types
Resources are linked using standard IANA link relations2

where possible, e. g. up for linking primary resources from
their subresources, or help. Table 1 shows the IANA link
relations reused in the VIM Portal API. Most link relations,
however, are service specific, therefore there is not much
room to reuse the generic standard link relations.

The design of media types is regarded as a key issue in
resource modeling [6]. An important requirement for this
case study is to keep the implementation as simple as pos-
sible. Therefore, media types must be easily producible and
consumable by the service. This is achieved by assuring that
the media types are structurally equal.

2http://www.iana.org/assignments/link-relations/
link-relations.xml

The VIM Portal’s API is able to produce and consume
custom XML representations for each resource. Addition-
ally, application/x-www-form-urlencoded is accepted as a
request only media type. These media types are documented
and the documentation is available for client developers.

5. FINDINGS AND FUTURE TASKS
With the described process the resources, their linking,

the contained information, and URIs can be extracted from
a source model and adapted if necessary. The benefit of this
approach is the reuse of existing knowledge combined with
the flexibility to adjust the source model to the requirements
of REST. This approach can be used for other applications
as well since the VIM Portal’s key characteristics—the ob-
ject model, a service layer implementing business processes,
dependencies to externally source that are potentially slow
and expensive to call—also apply to other enterprise web
applications.

The resource type classification proved to be particularly
useful. The concept of activity resources facilitates the mod-
eling of processes as resources in cases where long running
tasks require asynchronous processing. Additionally, it helps
to derive the URIs. This can counter a common objec-
tion against RESTful HTTP stating that the set of stan-
dard methods is too limited and not expressive enough to
be suitable in complex problem domains. During modeling
the number of activity resources could be reduced to only
three—as a result the full range of the resources’ HTTP
verbs is used.

A main obstacle is the lack of a modeling language like
UML for REST models. Object models are very different
from resource models. UML diagrams are not able to con-
vey the many different details of a resource model where
information like URI, caching directives, content types, or
filters for lists are important, whereas method signatures are
standardized.

Another interesting finding is that the initial harvesting
of the source model is a very mechanic, rule based process
which can be automated. Implementation showed that after
defining the resource model implementing the API was very
mechanic as well. This leads to the assumption that the
actual program code could be generated almost completely
from an expressive model into a REST framework. With
better tool support, developers could focus more on mod-
eling the problem domain without having to bother about
REST subtleties, which would consequently result in higher
quality and more compliant RESTful API.

6. REFERENCES
[1] S. Allamaraju. RESTful Web Services Cookbook.

O’Reilly Series. O’Reilly, 2010.

[2] T. Berners-Lee, L. Masinter, and M. McCahill.
Uniform Resource Locators (URL). Technical Report
1738, Internet Engineering Task Force, December
1994.

[3] C. Engelke and C. Fitzgerald. Replacing Legacy Web
Services with RESTful Services. In WS-REST ’10:
Proceedings of the First International Workshop on
RESTful Design, 2010.

[4] R. T. Fielding. Architectural Styles and the Design of
Network-Based Software Architectures. PhD thesis,
University of California, 2000.

http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

[5] D. Fuentes-Lorenzo. Managing Legacy Telco Data
Using RESTful Web Services. In E. Wilde and
C. Pautasso, editors, REST: From Research to
Practice, pages 7 – 26. Springer, 2011.

[6] M. Laitkorpi, P. Selonen, and T. Systä. Towards a
Model-Driven Process for Designing ReSTful Web
Services. In IEEE International Conference on Web
Services, pages 173 –180, 2009.

[7] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu.
Reengineering Legacy Systems with RESTful Web
Service. In 32nd Annual IEEE International Computer
Software and Applications Conference, pages 785 –790,
2008.

[8] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Series. O’Reilly, 2007.

[9] S. Schreier. Modeling RESTful Applications. In
WS-REST ’11: Proceedings of the Second
International Workshop on RESTful Design, 2011.

[10] S. Tilkov. REST und HTTP: Einsatz der Architektur
des Web für Integrationsszenarien. dpunkt.verlag,
2009.

	Introduction
	Related Work
	The Case Study
	The VIM Portal
	Challenges
	RESTful HTTP

	Modeling Process
	Early Modeling Considerations
	Primary Resources
	Subresources
	Activity Resources

	Modeling Steps
	Extraction of Resource Candidates
	Refining the Model
	Consolidation of Activities
	Finalizing the Model
	URI Design
	Link Relations and Media Types

	Findings and Future Tasks
	References

