
RESTify: From RPCs to RESTful HTTP Design

Jakob Strauch
mobile media & communication lab

FH Aachen University of Applied Sciences
strauch@fh-aachen.de

Silvia Schreier
Chair of Data Processing Technology

University of Hagen
silvia.schreier@fernuni-hagen.de

ABSTRACT
Starting with RESTful design is a difficult task – even more
if the designer has a RPC or object-oriented background. To
support the adaption from RPC- to REST-oriented think-
ing, we propose RESTify, a straightforward procedure model
to redesign a RPC-oriented interface into a hypermedia-
enabled REST interface. RESTfiy uses a WSDL document
of an existing SOAP service and consists of three iterations.
The result of each iteration is an enhanced version of the pre-
ceding one concerning the REST constraints and is meant
to be implemented as a HTTP service. Beside the technical
result of the process and the design of a RESTful interface,
the developer becomes acquainted to the main elements of a
RESTful design, the constraints and their application. The
results of the evaluation, using a prototypical web applica-
tion and public SOAP services, are promising.

1. INTRODUCTION
The biggest challenge in migrating a RPC-based API to

a RESTful design is the concept mismatch. Whereas RPC
interfaces concentrate on meaningful operations, a resource-
centric design requires a different view of the domain. In
some public web APIs the RPCs remain, e. g., in terms of
so called RPC URI-Tunneling. APIs using URI-Tunneling
“expose resources but operations are tunneled through ac-
tion parameters in URIs.” [1]. Occasionally, there are 1:1
matches from a SOAP variant to its HTTP-based pendant.

Best practices for designing REST interfaces can be found
but no general defined procedure that describes a transfor-
mation from a RPC-based API to a resource-oriented one.
To deal with this issue, we propose an iterative procedure
consisting of multiple iterations, each ending in a “more”
RESTful design than the latter. The iterations are derived
from different observations and (anti-)patterns.

Beside the procedure model and its technical implemen-
tation, this work focuses on helping developers with RPC
background to understand REST and RESTful HTTP. The
idea is to guide the developer using an example that starts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WS-REST 2012, April 2012; Lyon, France
Copyright 2012 ACM 978-1-4503-1190-8/12/04 ...$10.00.

Figure 1: Example of an initial resource

from a real world WSDL document. Every iteration outlines
some REST concepts to encourage the designer to improve
the intermediate results in terms of RESTful HTTP. Fur-
thermore, RESTify tries to raise the designers awareness of
best practices as well as anti patterns – and how to resolve
bad design choices in terms of REST.

After discussing related work in the next section, the iter-
ations of the RESTify procedure model and its prototypical
implementations are described in Section 3. The conclusions
and the future work are presented in Section 4.

2. RELATED WORK
The “Richardson Maturity Model” (RMM) [6] describes

three maturity levels of Web APIs. The RMM is contro-
versial [3] because it implicates a certain judgment of an
API solely based on a fixed set of quality attributes. De-
spite the controversy, the RMM helps to judge an API de-
sign, but it lacks of detailed steps to achieve the ultimate
REST level. Another model is the “Classification of HTTP
Web APIs” (CoHA) [1], which evaluates common practices
in public HTTP-based APIs. It describes the benefits and
drawbacks of the different design techniques. The descrip-
tion of a procedure to reach for the highest classification
is missing as well. Webber et al. [17] explain REST design
from scratch, and Allamaraju [2] offers a collection of recipes
for the designing RESTful services.

An approach to overcome the RPC-to-Resource gap is the
protocol adapter StoRHm [9] but only simple CRUD1 ser-
vices can be mapped straight-forward. Liu et al. [12] intro-
duce a process to re-engineer a legacy system to a RESTful
interface, but some REST constraints (e. g., hypermedia)
were disregarded. Adding hypermedia as an afterthought is
suggested by Liskin et al. [11] but not for SOAP services.
Laitkorpi et al. [10] present a model-driven approach for de-
signing RESTful services starting from a functional specifi-
cation and not existing RPC services. A model-driven pro-
cess that identifies resources based on legacy service descrip-

1Create, Read, Update, Delete

Figure 2: BPMN diagram of the procedure model

tions is described by Athanasopoulos and Kontogiannis [4],
but they leave out media types and hyperlinks. Starting as
an interface designer with SOAP/RPC background, there
is no step-by-step method to transform an existing RPC-
based design to a resource-oriented design while preserving
the transformation process transparent.

Hence, we present RESTify, an iterative procedure model
with semi-automated tasks to enable an interface designer to
redesign an existing RPC interface description to a resource-
oriented interface description.

3. RESTIFY PROCEDURE MODEL
Due to the RMM controversial, one main design goal of

RESTify was to create an iterative procedure model, where
every iteration respects more and more REST constraints,
identifies additional resources, and highlights different sys-
tem quality attributes. The first iteration focuses on the
addressability and identification of resources, as well as the
recognition of the origin SOAP operations. The second iter-
ation focuses on self-descriptiveness, cacheability, and per-
formance. The third iteration finally addresses integration,
hypermedia, and thus loose coupling.

The intermediary results of every iteration are influenced
by the described classifications. Results of the first itera-
tion can be classified with the CoHa “RPC URI-Tunneling”
level. The second and third iteration produce results at
RMM level two and three. Another design goal is to en-
able an automated processing of simple tasks to support the
redesign. Starting with a given WSDL (syntax) and the
designer’s knowledge of the SOAP service functionality (se-
mantics), every iteration leads to an interface description,
which will be revised to a more RESTful design.

Figure 2 depicts an overview of the iterations of the pro-
cedure model. To evaluate the procedure model, a proto-
typical web application has been developed. The procedure
itself is implemented by a separate REST API. Every step
in the procedure model can be found as a task or process
resource in this API. The process resources define links to
finished, current and next tasks. The media type is appli-

cation/hal+xml [8]. The design of processes and tasks is
inspired by jOpera [13]. The web application itself acts as a
client for this REST API.

The prototype was designed with a pedagogical aspect:
The user is guided by introductory steps, which describe

Figure 3: Excerpt of the example WSDL document

REST concepts and the upcoming task. Some tasks are
semi-automatic and provide default values for design deci-
sions to be made.

The REST API provides syntactical analysis with the help
of WordNet2 which is a lexical database for the English lan-
guage that groups words into synonym sets. RESTify uses
WordNet to suggest word categories (nouns, verbs, other).
Furthermore, RESTify utilizes known algorithms for word
stemming [14] or pluralization. Currently, only simple ser-
vices are supported. This means, RESTify does neither sup-
port additional WS-* protocols nor services based on specific
design patterns like the command pattern [5].

As an example, parts of the Amazon Mechanical Turk
WSDL3 are used. Mechanical Turk4 is a crowd sourcing
market place to delegate complex tasks (e. g., image recog-
nition) to humans.

A requester can upload Human Intelligent Tasks (HITs),
which are then fulfilled by the workers. The workers can
choose from a wide range of HITs and get paid if the re-
quester is satisfied with the result. A HIT is the main do-
main concept of the service, supported by numerous oper-
ations. We only present a small excerpt for demonstration
purposes (see Figure 3). The WSDL describes 39 opera-
tions with 106 complex data types and covers many aspects
in RESTify.

RESTify uses URI Templates [7] to illustrate the resource

2http://wordnet.princeton.edu/
3http://mechanicalturk.amazonaws.
com/AWSMechanicalTurk/2011-10-01/
AWSMechanicalTurkRequester.wsdl
4https://www.mturk.com/mturk/welcome

design. The proposed URI templates in the following sec-
tions are only examples and may vary.

3.1 Iteration I: Split Service Resource
The objective of the first iteration (see Figure 4) is to

split the single SOAP resource, as illustrated in Figure 1,
into multiple URI tunnel resources. RPC URI-Tunneling
is a widely used REST anti-pattern, which is described by
CoHA as the successive level after WS-*. Although many
REST constraints are violated, it can be found in many web
APIs (e. g., flickr5).

This iteration is the first step toward identification of
resources, which is the first of the uniform interface con-
straints. It uses syntactical conversions to achieve its goal
and is based on the observation, that public APIs in the
world wide web usually have descriptive identifiers. This fact
can be utilized to define new resource URIs while preserving
the transparency of the procedure model and its results for
the designer.

3.1.1 Resolve Ambiguities
The first task is to resolve any syntactic and semantic

ambiguities. The latter ones can be resolved by understand-
ing the service documentation, e. g., some operations can
be renamed to reflect their intention better. An operation
named AddEntry could be renamed to AddEntryToMyNews-
Feed. To support automatic processing, names are normal-
ized by applying CamelCase. In few cases the letter cas-
ing needs to be corrected (e. g., RegisterHITType, instead of
RegisterHITtype).

3.1.2 Tag Word Compounds
In this task, operation names are split into single words

or expressions by tagging word compounds explicitly. Due
to the normalized operation names (CamelCase), spaces can
be introduced to split words. Brackets are used to tag the
syntactical building blocks for the first interface design.

• GetQualificationsForQualificationType

• Get Qualifications For {Qualification Type}

In most cases, word compounds consists of nouns and fill
words. But in rare cases two verbs can form a compound,
too. The tagging task is restricted by one rule only. Mul-
tiple, single verbs are not allowed and usually not used in
operation names. This is important to clearly identify the
activities in the next task.

3.1.3 Extract Entity and Activities
Based on the observation of the methods of nine differ-

ent public available WSDLs, some patterns in the method
naming were identified:

• Entity methods: methods, which lack in an activity
(verb) usually are meant to get data about an entity.

• Solely activity methods: a minor set of methods de-
scribe only activities like Search. These methods can
be identified by a verb-only identifier.

• Simple activity methods: many methods describe ac-
tivities with entities involved, like RevokeQualification.

5http://www.flickr.com/services/api/

Figure 5: word type extraction (screenshot)

• CRUD methods: likewise simple activity methods but
likely mappable to one of the HTTP Verbs. Examples:
CreateHIT or UpdateQualificationType.

• Complex activity methods: method names consisting
of more than one entity, maybe one verb, and zero or
more filler indicate complex activities from a resource-
oriented point of view (e. g., MoveItemToCategory).

Using these observations and preparations, nouns (entities
or entity types) and verbs (activities) can be extracted.

Other word types refer either to the entity (e. g., Review-
ableHITS) or the activity (e. g., SearchExtended). In the
previous task, the designer could decide, e. g., whether Re-
viewableHITS is tagged as a word compound or two single
words. Depending on such decisions, this results in more or
less resources in the later tasks.

Although multiple verbs in one method are not allowed, in
few cases auxiliary verbs are involved, e. g., ForceExpireHIT.
This can be resolved by tag the verbs as compound ({Force
Expire} HIT).

For the mechanical turk examples 22 entities and 21 ac-
tivities can be extracted from the 39 methods (see Figure 5).
With this categorization at hand, the SOAP interface can
be split up.

3.1.4 Check Operation Naming Pattern
By highlighting the extracted word types with different

colors in all operation names, usually a naming pattern can
be observed. The pattern reflects the service-specific or
designer-specific naming style, like GetSomething, JustSome-
thing, or even SomethingGet.

Highlighted operation names, which differ from this pat-
tern may indicate on the one hand a mixed style (in rare
cases). On the other hand it may indicate a mistake or am-
biguous tagging and/or classification.

In this task, the naming pattern should be checked, if it
is reasonable and feasible. If an operation name contains
two nouns, but no verb, a closer look could reveal a word
miscategorization or a homonym6. In this cases, one can
jump back to a prior task (see 5). If multiple nouns are
encoded in a single operation name, a designated entity has
to be chosen here.

6a word with multiple semantics, e. g., list, which can be a
noun or a verb depending on the context

Figure 4: BPMN diagram of iteration I

3.1.5 Transfer Operations to Tunnel Resources
The last task in this iteration leads to a first interface

description toward a RESTful design. Expressive URIs are
used to name the resources. Therefore, two simple URI Tem-
plates [7] are used to reflect the resources origin:

• /{designated-entity}?action={activity}

• /{activity}

The first template will be applied to almost every case,
while the second template was defined for operations with
one verb only, e. g., Search. If the activity is not explicitly
encoded in the operations name, the activity “get” will be
assumed. The underlying URI structure was chosen to illus-
trate the RPC URI-tunneling anti-pattern. Hence, a SOAP
method named GetReviewableHITS can be transferred into
a URI like /reviewable-hits?action=get. The prototype
supports this task completely, so that manual inputs are not
necessary.

3.1.6 Results
As a result of this iteration, multiple resources are intro-

duced by splitting the single SOAP resource into multiple
parts according to its methods (see Figure 6). Some of them
can be interpreted as one URI tunnel with multiple valid ac-
tion values and the same designated entity type. Because
every SOAP operation is transferred into exact one resource,
the representation formats can be extracted from the WSDL
itself and are set to the generic media type application/xml.
The resources accept only HTTP POST.

In the mechanical turk example 39 resources can be de-
fined (one for each SOAP method). Seven designated enti-
ties support multiple action values in 23 affected resources.
Each designated entity shares the same URI Template with
predefined action parameters. To pick up the example op-
erations of the WSDL excerpt, the resulting HIT resource
set (/hit?action={activity}) offers create, dispose, dis-
able, get, extend and force-expire as valid actions. Each
of the 16 remaining resources has only one valid action.

This first iteration introduces additional resources, which
is just a little more RESTful in terms of the RMM. The
results can be used to implement simple HTTP wrapper for
the SOAP method pendants. The resulting resources are
simple handlers for plain old xml payload, and many REST
constraints are still violated, e. g., self-descriptive messages,
which is respected in the next iteration.

Figure 6: Example of resources after iteration I

The results of the first iteration are resources following
the RPC URI-Template anti-pattern.

3.2 Iteration II: Apply Uniform Interface
In the second iteration (see Figure 7), the overloading of

POST is replaced by following the uniform interface con-
straint. The key problem is that the resources from the first
iteration represent in fact multiple resources, although each
should be addressable, to follow the constraints of resource
identification and self-descriptive messages.

In this iteration, the operation-to-resources gap has to be
bridged. We claim that the semantics of a particular oper-
ation can be mapped to correlated archetypal semantics in
most cases, e. g., CRUD entity, calculate something or query
set of things. Based on this assumption, RESTify defines a
couple of archetypal semantics and so called mapping strate-
gies for these semantics.

A mapping strategy describes to which request sequence
an operation can be transformed. Furthermore, it defines
(non-formal) preconditions referring to syntactic or semantic
properties of an operation which need to be fulfilled to make
the mapping strategy applicable.

In the simple cases the sequence consists of one request but
sometimes multiple consecutive requests are needed where
a prior request contains the identifier that the consecutive
request is sent to. An example for such a request sequence
for the archetypal semantic “create” is the creation of an
entity with the GET-PUT pattern [18].

Iteration II defines some mapping strategies for common

Figure 7: BPMN diagram of iteration II

archetypal semantics - starting with the most common case
for web interfaces.

3.2.1 Resolve Tunnel to CRUD Resources
Analyzing nine randomly selected WSDLs leads to the

result, that about 65% of the SOAP methods are CRUD
methods of domain objects. The ratio per service differs
from about 55% to 100%. Hence, starting with the resolu-
tion of tunnel resources into entity resources seems obvious.

The activity encoded explicitly in every resource of itera-
tion I (or implicit in the corresponding operation name) is
an indicator to decide, if the semantics can be simplified to
CRUD. But in the end, the designers knowledge about the
service semantics are decisive.

An operation, which may be an archetypal CRUD is re-
stricted to be strictly CRUD. This means, that one entity
of an entity set is being created, read, written or deleted by
its identifier only. Especially arbitrary read semantics are
specifically excluded and will be handled by other tasks.

Once an archetypal CRUD semantic is identified for any
operation, a mapping scheme has to be selected for ev-
ery identified CRUD operation (or its correlated tunnel re-
source). As an example, possible mapping schemes (respec-
tively request schemes) for CREATE are:

• POST /{set}

• PUT /{set}/{identity}

• GET /{factory}/{token} → EntityURI
PUT EntityURI

Applying a scheme to a specific operation means, that at
least one variable of the URI Template hat to be instanti-
ated. The resulting URI Template may degenerate to an
URI, describing a singleton resource of the system. If the
resulting URI Template contains one or more variables, it
describes a set of resources.

The operations CreateHIT, DisposeHIT, GetHIT (see Fig-
ure 3) are good candidates for strict CRUD resources.

3.2.2 Resolve Tunnel to Result Resources
Another set of operations, which are not covered by the

previous “strictly CRUD” mapping strategy, could be han-
dled in this task. If the operation processes a simple func-
tion on objects of a domain, it can be mapped to “result
resources”. This covers a wide range of semantics, e. g., cal-
culating a route between two places, filtering a known set of
entities, searching for information.

One option is to apply a GET-strategy on result resources,
which are defined by the operation. An operation has to be

“safe” to apply this strategy. A flexible URI-Template can
be expressed through the expansion modifier [7]. With the
scheme /{result}{?context*} different URI-Templates can
be covered:

• GET /route?from={from}&to={to}

• GET /hits?type={hit-type}

• GET /search-results?term={term}

A naming for the expected result resource set can be syn-
tactically extracted from the WSDL, e. g., from the opera-
tion name or the result type, or from the documentation.

For large inputs, this mapping could be inapplicable due
to practical limitations. URIs could become very long, which
is restricted by some HTTP implementations. Allamaraju
supposes using POST for this situations (see recipes 8.3 and
8.4 [2]). This can also be defined as a mapping strategy with
an example URI like /{processor}. The context has to be
moved to the request’s HTTP body.

For the example excerpt, these strategies can be applied
to the SearchHits operation or its tunnel pendant /hits?

action=search.

3.2.3 Resolve Tunnel to Task Resources
Some operations indicate a “process-critical” state change

of a domain entity. This is the case for the Hit tunnel re-
source set with the remaining, unmapped actions (disable,
extend, force-expire), and set-as-reviewing).

An option is to resolve the tunnel into a task resource.
The URI design proposed by the prototype is inspired by
the jOpera [13] project:

• Task resources: /task/{name}

• Task instance resources: /task/{name}/{instance}

To indicate the different meaning, the naming should be
also transformed, e. g., from /hit?action=extend to /task/

hit-extension/. The prototype uses a simplistic algorithm
to propose such conversions from verbs to nouns. The algo-
rithm uses prioritized lists of typical verb-endings and con-
versions, e. g., “...end” to “...ension” or “...ize” to “...ization”.

3.2.4 Results
After this iteration the different resources support differ-

ent operations and are no longer URI tunnels but map to
entities (see Figure 8). By applying the different strategies
to the WSDL excerpt of Figure 3, the resource design doc-
umented in Table 1 can be developed.

Resource Description Resource Identifier Supported
Operations

Corresponding
WSDL Operation

HITs entity set /hits/ POST CreateHIT
filtered HITs result set /hits?title={title}&reward={reward}&... GET SearchHITs

HIT entity /hit/{hit-id}
GET GetHIT
DELETE DisposeHIT

disable HIT task /task/hit-disabling POST

DisableHIT
disable HIT task instance /task/hit-disabling/{instance-id}

GET

PUT

extend HIT task /task/hit-extension POST

ExtendHIT
extend HIT task instance /task/hit-extension/{instance-id}

GET

PUT

expire HIT task /task/hit-expiration POST

ForceExpireHIT
expire HIT task instance /task/hit-expiration/{instance-id}

GET

PUT

review HIT task /task/hit-reviewing POST

SetHITAsReviewing
review HIT task instance /task/hit-reviewing/{instance-id}

GET

PUT

Table 1: Extract of the resource design after iteration II

Figure 8: Example of resources after iteration II

The proposed tasks in this iteration do not claim any com-
pleteness to map every possible operation type, but task re-
sources can be used as fall-back strategy for most operations.
This means, there could be a better option to map a specific
archetype semantic to support a versatile resource design
with better caching or hypermedia support. Thus, RESTify
suggests a formalized way to describe mapping strategies in
an extensible and general manner.

3.3 Iteration III: Enable Hypermedia
To follow hypermedia as the engine of application state

(HATEOAS), the last iteration (see Figure 9) introduces
additional semantics to the RESTful design in comparison
to the RPC-oriented design. By defining state-depended
relationships among entity types and activities the interface
description can be enriched with hypermedia.

3.3.1 Define Resource States
To complete the resource design this step defines“process-

critical” states. Changing a resource’s property ends always
in a new resource state regardless of the property’s impor-
tance. The states, which should be defined in this task, are
states which may change available options in the domain’s
processes. Furthermore, entity states can be orthogonal to
each other. Thus, an entity of a certain domain may have
multiple states, while from a technical perspective a resource
has only one valid state.

The simplest approach is to define only the states itself.
A better option would be state machines, which describe the
life cycle [15]. For the HIT example, some states are already
defined implicitly by the task resources, which change a HIT
resource to a certain state. These states are extended, ex-
pired, disabled, and reviewed.

According to the state definition, additional resources can
be also introduced here. For example:

• /disabled-hits

• /extended-hits

• /expired-hits

• /reviewed-hits

With explicitly defined states at hand, resource relation-
ships can be defined more appropriately.

3.3.2 Define Entity Resource Relationships
The first task of this iteration is to define typical relation-

ships in the resource design of iteration II. Some relation-
ships are static, thus valid in every state of a resource, and
some are dynamic. The classification of Tilkov[16] can be
used to define the static relationships among the classified
resources (e. g., primary-, sub-, and list-resources). Every re-
lationship between specific resources can be represented by
a hyperlink, which follows a meaningful link relation type.

The resource design at this point describes resource sets of
the domain by using URI Templates. Thus, it is reasonable
to describe the relationships among the resource sets by link
relation types between these templates.

The definition of a relationship can be defined by a simple
triplet: (source[state], link type, target[state]).

Figure 9: BPMN diagram of iteration III

Source and target are represented by URI-Templates,
while [state] describes an optional requirement, that the
resource has to be (or must not be) in one or more specific
states to apply the hypermedia link. Multiple states are
comma-separated and negation is defined by the symbol ¬.

This excerpt of HIT relationships uses link relation types
from the IANA7 registration and custom defined types8.

• ("/hits", "item", "/hit/{hit-id})"

• ("/disabled-hits", "item",

"/hit/{hit-id})" [disabled])

• ("/extended-hits", "item",

"/hit/{hit-id}" [extended])

• ("/expired-hits", "item",

"/hit/{hit-id} [expired])"

• ("/reviewed-hits", "item",

"/hit/{hit-id} [reviewed])"

• ("/hit/{hit-id}", "collection", "/hits)"

• ...

Based on the results of iteration II, only few proposals can
be made by the prototype here. For example, the CRUD
resource design implies entities and related entity sets. This
knowledge can be used to propose default relationships. By
completing this task, the next step “refactors” the resource
design.

3.3.3 Restructure Resource Addressing Schemes
Based on the definitions of the preceding task, the URI

schemes can be redefined to reflect the hierarchical relation-
ship. For example, the /hit/{hit-id} resource set and the
list resource /hits/ are hierarchical related. Therefore, the
defined URI templates for hit entities can be subordinated
to /hits/. Even though this is a cosmetic step, it could
add coherence to the URI design. The prototype can sup-
port this process by analyzing the relationships and inferring
a simple, hierarchical URI structure from the defined URI
Templates.

3.3.4 Define Process Resources
If activity resources are defined, they can be set into a

context of a process. These processes can be known im-
plicitly by the designer or explicit mentioned in the SOAP
service’s documentation. The modeling of processes based
on the activity resources can be done with approaches like
jOpera [13].
7http://www.iana.org/assignments/link-relations/
link-relations.xml
8CURIE syntax, ex := http://www.example.com

Figure 10: Example of resources after iteration III

3.3.5 Define Activity Resource Relationships
As a last step, the entity resource sets are linked with pos-

sible activities in their context. Usually, such activities are
in general state-dependent. A representation of a paid order
resource should not contain a link to a payment resource.

For the HIT example, the following activity relationships
can be defined:

• ("/hit/{hit-id}" [¬disabled,¬expired],
"ex:disabling", "/task/hit-disabling)")

• ("/hit/{hit-id}", "ex:reviewing",

"/task/hit-reviewing)"

• ("/hit/{hit-id}" [¬expired], "ex:expiration",

"/task/hit-expiration)"

• ("/hit/{hit-id}" [¬disabled], "ex:extending",

"/task/hit-extending)"

3.3.6 Results
Iteration III produces just a few new resources, according

to defined states of interest. The main goal of this iteration
is, to enrich the resource design with hypermedia (see Fig-
ure 10), and thus to forward a loosely-coupled design as well
as HATEOAS.

4. CONCLUSIONS AND FUTURE WORK
We presented a procedure model to transform a SOAP

design to a RESTful HTTP design. Preconditions for the
procedures are an interpretable service description (WSDL)
and the implicit knowledge of the service operations’ seman-
tics. The procedure is partly implemented in a prototypical

web application where the presented examples are extracted
from. Some tasks can be supported by simple algorithms.

The state of iteration I is very stable and produces a rea-
sonable design. Iteration II reflects best the gap between
RPCs and resource-oriented design. Although this iteration
will define more sophisticated tasks in the future, the basic
idea of mapping strategies will remain. More differentiated
strategies will be defined, if more SOAP services are evalu-
ated. The last iteration however, is ongoing work and the
proposed procedure model is still in an experimental state.
Furthermore, there are important aspects, which are not
fully mentioned here, e. g., usage and design of media types,
caching definitions, or authorization scenarios.

But looking at the first results produced with the proto-
typical application, we expect an iterative procedure model
to be a successful approach to close the design gap between
the RPC- and REST-style. Furthermore, the procedure
model can be possibly applied with minor changes to object-
oriented interfaces. We do not expect nor propose this model
to create a fully functional and reasonable implementation
based on its results. There are many aspects on how to deal
with the resource granularity, e. g., performance and caching
issues. But we think an iterative approach can enhance the
learning process of REST aspects or respectively the “un-
learning” of RPC concepts, and that the results can be used
as a debatable design basis.

The result of every iteration can be used as a basis for a
manual service or wrapper implementation, but at least the
documentation can be generated out of the iteration results.

5. REFERENCES
[1] J. Algermissen. Classification of HTTP-based APIs.

http://nordsc.com/ext/classification_of_http_

based_apis.html, Feb. 2010. [accessed 2012-02-14].

[2] S. Allamaraju. RESTful Web Services Cookbook.
O’Reilly Media, 2010.

[3] S. Allamaraju. Measuring REST. http:
//www.subbu.org/blog/2011/05/measuring-rest,
May 2011. [accessed 2012-02-14].

[4] M. Athanasopoulos and K. Kontogiannis.
Identification of REST-like Resources from Legacy
Service Descriptions. 17th Working Conference on
Reverse Engineering, pages 215–219, 2010.

[5] T. Erl. SOA design patterns. Prentice Hall, 2009.

[6] M. Fowler. Richardson Maturity Model.
http://martinfowler.com/articles/

richardsonMaturityModel.html, Mar. 2010. [accessed
2012-02-14].

[7] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham,
and D. Orchard. URI Template. Internet-Draft.
http://tools.ietf.org/html/

draft-gregorio-uritemplate-08, Jan. 2012.
[accessed 2012-02-14].

[8] M. Kelly. HAL - Hypertext Application Language.
http://stateless.co/hal_specification.html, Oct.
2011. [accessed 2012-02-14].

[9] S. Kennedy, R. Stewart, P. Jacob, and O. Molloy.
StoRHm: a protocol adapter for mapping SOAP
based Web Services to RESTful HTTP format.
Electronic Commerce Research, 11:245–269, 2011.

[10] M. Laitkorpi, P. Selonen, and T. Systa. Towards a
Model-Driven Process for Designing ReSTful Web

Services. In ICWS ’09: Proc. Int. Conf. on Web
Services, pages 173–180. IEEE, 2009.

[11] O. Liskin, L. Singer, and K. Schneider. Teaching old
services new tricks: adding HATEOAS support as an
afterthought. In Proceedings of the Second
International Workshop on RESTful Design, pages
3–10. ACM, 2011.

[12] Y. Liu, Q. Wang, M. Zhuang, and Y. Zhu.
Reengineering Legacy Systems with RESTful Web
Service. In COMPSAC ’08: Proc. Int. Software and
Applications Conf., pages 785–790. IEEE, 2008.

[13] C. Pautasso. Composing RESTful Services with
JOpera. In Software Composition, volume 5634 of
LNCS, pages 142–159. Springer, 2009.

[14] M. Porter. The Porter Stemming Algorithm. http://
tartarus.org/~martin/PorterStemmer/index.html.
[accessed 2012-02-14].

[15] S. Schreier. Modeling RESTful applications. In
Proceedings of the Second International Workshop on
RESTful Design, pages 15–21. ACM, 2011.

[16] S. Tilkov. REST und HTTP: Einsatz der Architektur
des Webs für Integrationsszenarien. dpunkt.verlag,
2009.

[17] J. Webber, S. Parastatidis, and I. Robinson. REST in
Practice: Hypermedia and Systems Architecture.
O’Reilly Media, 2010.

[18] E. Wilde. Creating Resources with GET/PUT.
http://dret.typepad.com/dretblog/2011/11/

creating-resources-with-get-put.html, Nov. 2011.
[accessed 2012-02-14].

