
Hecate,
Managing Authorization with

RESTful XML

Sebastian Graf, Vyacheslav Zhouldev,
Lukas Lewandowski, and Marcel Waldvogel

Distributed Systems Group
University of Konstanz

&
School of Engineering and Science

Jacobs University

1

Sunday, March 27, 2011

Problem Statement

How can authorization on RESTful
resources can be performed under

the following constraints?

1. Variability of resources must be kept!

2. Different permissions must be offered for the same
resource!

3. The extensibility of the framework must be ensured!

2

Sunday, March 27, 2011

Schema of Architecture

3

Hecate
Authorization Framework

PXD

user
model

Resources

firstname : "Peter"
lastname : "Paul"

<house>
 <floor>
 …
 </floor>
</house>

"lecture": {
 "start": "April 4th",
 "end": "June, 31st,
 "topic" "Web Apps"
}Requests &

Responses

floor 4
floor 3
floor 2
floor 1

Sunday, March 27, 2011

User Model

‣ Simple mapping of users to rules

‣ Represented as a simple table

expressions. A simple table maps the di! erent permissions
to users. This approach is extended: Gabillon [10] makes
use of this idea by extending the proposed functionality for
updating purposes of native XML databases. Fan et al. [8]
defines furthermore views based on a computed DTD of the
permission model. We use the idea of Damiani [6] as well
since our permission model constitutes out of fixed XPath-
expressions. Since we rely on independent resources denoted
by links instead of direct XML as database, we further spec-
ify our authorization with respect to REST . This results in
our fixed schema described in Section 2.2.

X-RBAC [2] and its extension X-GTRBAC [1] represents
a policy specification of XML-based web services. In this
approach, rules and permissions find themselves in an XML
dialect similar to our approach. Even if this approach relates
to web services in general, it di! ers from Hecate since we
rely specifically on REST with independent resources and
not on XML as common resource format in a service context.
Related to SOAP, Damiani et al. [7] presents an approach
quite similar to ours. This approach encapsulates inlying
resources for authorization purposes specifically for SOAP-
based communication. Current HTTP approaches mostly
rely on authentication. These approaches e.g. from Story et
al. [15] or Peng et al. [14] o! er possible extensions to Hecate
for authentication purposes.

2. HECATE
Since resources tend to have various di! erent characteris-

tics, Hecate cannot rely on those specific peculiarities since
any adaption of the authorization process to concrete un-
derlying formats might result in a restriction of the overall
functionality. Nevertheless, in-depth knowledge about the
architecture of a resource enables an authorization workflow
to o! er extended functionality represented by permissions
on substructure level of a resource. Hecate satisfies these
needs by an indispensable authorization workflow against
the URI and an optional, extending authorization workflow
against known substructures. More concise, based on the
URI, the HTTP-verb and the user credentials, the request
is either forwarded, denied or equipped with an optional fil-
ter which is resource-aware. Hecate acts as a proxy whereas
the representation of the underlying resource stays flexible
and unbound but can influence the authorization in an ex-
tensible way.

Figure 1 shows Hecate at a glance. Hecate includes
an authorization framework and a multiple number of re-
sources. The authorization framework consists out of a user
model, representing the authorization mapping to the user
credentials, and the Permission XML Document (PXD),
representing di! erent rules and their mapping to HTTP-
functionalities, resources and optional resource-aware filters.
The resources are either stored directly in Hecate or linked
in the PXD . Note that each request is evaluated beforehand
by the authorization framework before consulting any un-
derlaying resources.

2.1 User Management
The user model acts as a central storage regarding user

identifiers and suitable references to the PXD over unique
identifiers. Table 1 shows an example of the user model.

The user store consists out of the user-ids which are mapped
to identifiers of di! erent rules. “john.doe” is allowed to ac-
cess ruleset 13 while “jane.doe” is permitted to access the

rulesets 12 and 13. As one URI can be accessed through dif-
ferent rulesets as denoted in Sec. 2.2, the user model itself
is not aware about the concrete mapping of user-associated
rules to requested URIs. Since each rule maps to one spe-
cific HTTP-operation related to an unique URI, each au-
thorization performing an operation on a defined resource is
referenced only once in the user model.
Since we work on HTTP-operational level, already exist-

ing rules often match the requirements of a new user to be
inserted. A new user is simply inserted into the user store
including the mapping to the suitable permissions. If there
is no matching ruleset available for the denoted URI, a new
one is inserted in the PXD and referenced within the user
model.
As clearly visible, the user model is designed straight-

forward with less overhead while most logic regarding our
permission handling is included in the PXD .

2.2 Permission XML Document
The PXD represents Hecate related to rules, permissions

and additional filtering. The motivation for the architecture
of the PXD finds itself in the following four aspects:

1. A registered URI can be guarded by multiple rules.
Based on the di! erent possible operations on one URI,
this aspect ensures a variable number of di! erent au-
thorization sets.

2. Each rule maps on one specific HTTP operation de-
rived from the set of available HTTP-verbs. Therefore
we ensure unique REST awareness within each rule in
the PXD .

3. An additional optional resource-aware permission fil-
tering is provided besides the authorization on URI-
and REST -level. Even if this filtering is independent
from the data itself, it must be aware of the character-
istics of the data.

4. The resource can be referenced over links or stored in
the PXD itself. In both cases, the content related to
a resource remains independent against mapping rules
and permissions.

A fixed schema shown in Fig. 2 defines the PXD where
each of the four aspects maps to corresponding nodes in-
cluding suitable substructures:

¥ rule-nodes:
Each rule-node represents one specific permission. This
permission is bound to one specific resource over the
uri-attribute. Even if this attribute is mandatory, it
should not be used for unique identification since mul-
tiple rules can map on the same URI allowing di! erent
operations. For unique identification of rules, an id-
attribute is included within each rule linking the user
model to the PXD . The concrete permission on the

Table 1: User Permissions

user-id rule-ids

john.doe 13
jane.doe 12 13

.

4

Sunday, March 27, 2011

Permission XML Model (PXD)

‣ XML-based definition of operations
mapped to resources

‣ Representing rules and their mapping to

✴HTTP-functionalities

✴Resources

✴(Optional resource aware filters)

5

Sunday, March 27, 2011

4 Properties of PXD

1. One URI can be guarded by multiple rules

2. Each rule maps to one HTTP-Verb

3. Resource-awareness is possible

4. The representation of the resource is
independent of the PXD

6

Sunday, March 27, 2011

PXD Example

7

3. XML-BASED RESOURCES
Since XML offers flexible adaption as well as enriched

toolsets, multiple non-REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware filtering.

Listing 1: A resource before modifying

1 <house >

<floor id="1">

3 <room >

...

5 <lamps >

<lamp status ="OFF" id="1.1"/ >

7 <lamp status ="OFF" id="1.2"/ >

</lamps >

9 </room >

</floor >

11 ...

<floor id="4">

13 <room >

...

15 <lamps >

<lamp status ="OFF" id="4.1"/ >

17 <lamp status ="OFF" id="4.2"/ >

</lamps >

19 </room >

</floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple floors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
different “things” are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >

<rule id="12" perm_id ="22"

3 uri="http :// house/floor /4"/>

<rule id="13" perm_id ="23"

5 uri="http :// house/floor /4"/>

...

7 <data uri="http :// house/floor /4"">

<content >

9 /house/floor[@id =4]

</content >

11 </data >

...

13 <filter id="43" >

<link >

15 /house/floor[@id =4]// lamps

</link >

17 </filter >

<perm id="22" filter_id ="43"

19 verb="get"/>

<perm id="23" verb="get"/>

21 </resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two different rules are
mapping the denoted resource. While rule “13” allows the
retrieval of all data from the 4th floor, rule “12” filters the
same resource by only returning lamps-nodes. This addi-
tional filtering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the filtering of lamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware filtering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP -operation. Related to modification requests, such a
filtering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can offer a simple yet
effective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them efficiently.
As a rough approximation, VDocsare “XML (database)

views” analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocsare the results of XQueries
computed on demand from the XML files explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a file system), presented to the user as documents.
Furthermore they can be presented as file system entities in
database or physical files written to a file system. Like views
in relational databases, VDocsbecome very useful abstrac-
tions in the interaction with collection of XML documents.

VDocs are defined by a VDoc SpeciÞcation which essen-
tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocsSpecs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
defined either in VDocSpec itself or passed on-the-fly upon
a VDocobtaining. Parameters may dramatically change the
content of VDocwhereas there only one VDocSpec exists.
As we will see in Section 3.2 the single VDocSpec may be
used to manage modifying REST requests consistently in a
fine-granular manner.
Additionally, one of the most advanced features is the abil-

ity to edit VDocsand process the modified version further:
changed parts of a VDocthat came from files in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDocis not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDocXQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocsis that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP -

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of fine-
grained filtering rules expressed via XPath, certain XQuery
Update modifications might be forbidden for a certain user.
To overcome this problem we are proposing to use the

VDocsconcept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request filtering restrictions posed by an XPath expression.
We propose to have a VDocSpec that admit two param-

eters: an URI of the resource and the filtering XPath ex-

rization Framework beforehand. Thereby Hecate acts as a
proxy whereas the representation of the underlaying con-
crete resource stays flexible and unbound from the context
of the authorization workflow.

3.1 Overview
Figure 1 shows Hecate at a glance. Hecate can be de-

ployed as standalone web server or as an modular web ser-
vice. Anyway, it consists out of our Authorization Frame-
work and multiple Resources. The Authorization Frame-
work handles any incoming request. With respect to the re-
quested REST operation, our Authorization Framework proves
afterwards access to the underlaying resources.

Therefore, it consists out of permission XML document
called PXD and a user model represented as a table. The
PXD acts not only as a highly flexible mapping of allowed
operations mapped on defined resources but also as optional
container for resource contents themselves. That means that
content can either be stored directly in the PXD or linked
over XLink [5] references to any external resource. Fig-
ure 1 shows both possibilities: The PXD stores the contents
referenced by the bolt arrows directly in its own structure
whereas the dotted arrow denotes a linked resource repre-
sented by the different floors of a house-resource which is not
part of Hecate. Even if our Authorization Framework not
only represents rulesets for filtering incoming requests, it has
also the optional ability to overlay responses for rule-specific
representations. This operation is represented by the second
arrow from the Resourcesback to the Authorization Frame-
work . All of the correlations between URIs, REST -verbs,
resources, response filters and users are well-defined in the
PXD and referenced within unique identifiers. The URI or
designated ids reflect these unique identifiers. The central
XML is described in detail in section 3.3.

3.2 User Management
The Authorization Framework consists of two disjunct

components: The PXD representing the rules and resource-
mapping and a store handling all user-related data. Note
that the PXD stores no user-related data after all even if all
rules are identifiable within an unique identifier. The user
store references these unique identifiers. Figure 1 shows an
example of the user model.
As clearly visible, the design of the user store consists

only out of the user-id which is mapped to the ids of the
rules to match e.g. ”john doe” is allowed to access ruleset
13 while ”jane doe” is able to access ruleset 12 and 13. Note
that one ruleset maps always only one unique URI while an
URI can be accessed with different rulesets as we will see in
Section 3.3.
The adaption of user permissions is decoupled from the

storage of the rules. If a new user is inserted, it has to be
checked if there is an existing rule matching the purposes of
the designated users permissions. If so, a new user is simply
inserted into the user store with the suitable permissions.

Table 1: User Permissions

user-id rule-ids

john doe 13

jane doe 12 13

.

If there is no matching rule in the ruleset available for the
denoted URI, a new ruleset is inserted.
As clearly visible, the user model is designed straight-

forward with less overhead. We put most of the functionality
of Hecate in the PXD since we respect not only the REST -
awareness of the resources within our Authorization Frame-
workbut also want to provide data-centric operations regard-
ing specific responses for different resources as explained in
the next section.

3.3 Permission XML Document
The second part of our Authorization Framework consists

out of a permission XML document called PXD . Since the
PXD represents a core aspect of Hecate, it is based on a
specific schema shown in Fig. 2.

PXD represents Hecate regarding the three following as-
pects: First of all, a registered URI can be guarded by mul-
tiple rules. This enables the PXD to provide high flexibil-
ity e.g. since multiple rules for one resource can be com-
bined regarding specific users. Second, each rule maps on a
specific set of allowed REST operations. These allowance
map on the concrete REST verbs. Therefore we ensure
REST awareness within each rule in the PXD . Third, be-
sides the authorization on URI- and REST level, we fur-
ther provide an optional data-centric response mechanism.
Within this technique, responses can be encapsulated with
the help of suitable transformations and filters. Therefore,
knowledge about the representation of the responding re-
source and its operations is necessary.
As clearly visible in Fig. 2, these features are mapped by

suitable substructures in the PXD .

• rule -nodes:
Each rule -node represents one specific permission. This
permission is bound to one specific resource over the
uri -attribute. Even if this attribute is mandatory, it
should not be used for unique identification and there-
fore referencing against the user store since we allow
the mapping of multiple rules for one resource. For
this purpose, an id -attribute is associated to each rule
which acts as unique primary-key for all rules. Fur-
thermore each rule -node has an optional attribute for
referencing to specific response-wrappers. We will dis-
cuss the purpose of rule-centric response-wrapping in
Section 4. The permissions themselves are encapsu-
lated as attributes mapped to REST and related to a
permission-node. Within such setup, we provide fine-
granular permissions based REST operations within
Hecate.

• data-nodes:
Each resource-node maps one specific resource. Since
we offer in the PXD itself the possibility to store con-
tent, each data-node consists either of a link or a con-
tent. A content -node can consists out of any type
representing the flexibility of XML as underlaying re-
source format whereas a link -node must contain an
URI for forwarding the request. Note that each data
must contain either content or a link. The referenc-
ing against the concrete resource takes place over an
attribute which maps the requested URI. Therefore,
each URI ends up in exactly one data-node where the
uri -attribute acts as a primary key related to the re-
source.

rule
@uri

@id

data
@uri

Þlter
@id

@perm_id

perm
@id

@Þlter_id

Sunday, March 27, 2011

Workflow of Authorization

8

Receiving Request

Get IDs of user
model related to

credentials
IDs found?

Yes

Get rules matching
the URI, the REST
verb and the IDs

Nodes
found?

No

Checking optional
filter for matching

permission
Yes

Filter
available

Yes

No
Forwarding
request and

returning result

Returning 403
(forbidden)

Returning 403
(forbidden)

Applying filter on either
request or result and returning

result

No

Sunday, March 27, 2011

Resource-aware filtering

9

‣Optional

‣ Bound to the the requesting resource

✓ Kind

✓ Content

✓ Filter possibilities

‣ Flexible mapping to HTTP-Verbs

Sunday, March 27, 2011

Example

10

3. XML-BASED RESOURCES
Since XML o! ers flexible adaption as well as enriched

toolsets, multiple non-REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware filtering.

Listing 1: A resource before modifying

1 <house >
<floor id ="1" >

3 <room >
...

5 <lamps >
< lamp status =" OFF" id ="1.1"/ >

7 <lamp status =" OFF" id ="1.2"/ >
</ lamps >

9 </ room >
</ floor >

11 ...
< f loor id ="4" >

13 <room >
...

15 <lamps >
< lamp status =" OFF" id ="4.1"/ >

17 <lamp status =" OFF" id ="4.2"/ >
</ lamps >

19 </ room >
</ floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple floors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to theWeb of Things paradigm where
di! erent “things” are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >
<rule id ="12" perm_id ="22"

3 uri =" http :// house / f loor /4"/ >
<rule id ="13" perm_id ="23"

5 uri =" http :// house / f loor /4"/ >
...

7 <data uri =" http :// house / f loor /4"" >
<content >

9 / house / f loor [@id =4]
</ content >

11 </data >
...

13 <fi l ter id ="43" >
<link >

15 / house / f loor [@id =4]// lamps
</ link >

17 </ fi lter >
<perm id ="22" f i l ter_id ="43"

19 verb =" get "/>
<perm id ="23" verb =" get "/>

21 </ resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two di! erent rules are
mapping the denoted resource. While rule “13” allows the
retrieval of all data from the 4th floor, rule “12” filters the
same resource by only returning lamps-nodes. This addi-
tional filtering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the filtering of lamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware filtering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP-operation. Related to modification requests, such a
filtering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can o! er a simple yet
e! ective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-

tional devices and processing them e" ciently.
As a rough approximation, VDocs are “XML (database)

views” analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocs are the results of XQueries
computed on demand from the XML files explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a file system), presented to the user as documents.
Furthermore they can be presented as file system entities in
database or physical files written to a file system. Like views
in relational databases, VDocs become very useful abstrac-
tions in the interaction with collection of XML documents.
VDocs are defined by a VDoc Specification which essen-

tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocs Specs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
defined either in VDoc Spec itself or passed on-the-fly upon
a VDoc obtaining. Parameters may dramatically change the
content of VDoc whereas there only one VDoc Spec exists.
As we will see in Section 3.2 the single VDoc Spec may be
used to manage modifying REST requests consistently in a
fine-granular manner.
Additionally, one of the most advanced features is the abil-

ity to edit VDocs and process the modified version further:
changed parts of a VDoc that came from files in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDoc is not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDoc XQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocs is that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifyingHTTP-

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of fine-
grained filtering rules expressed via XPath, certain XQuery
Update modifications might be forbidden for a certain user.
To overcome this problem we are proposing to use the

VDocs concept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request filtering restrictions posed by an XPath expression.
We propose to have a VDoc Spec that admit two param-

eters: an URI of the resource and the filtering XPath ex-

3. XML-BASED RESOURCES
Since XML o! ers ßexible adaption as well as enriched

toolsets, multiple non- REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware Þltering.

Listing 1: A resource before modifying

1 <house >

<floor id="1">

3 <room >

...

5 <lamps >

<lamp status ="OFF" id="1.1"/ >

7 <lamp status ="OFF" id="1.2"/ >

</lamps >

9 </room >

</floor >

11 ...

<floor id="4">

13 <room >

...

15 <lamps >

<lamp status ="OFF" id="4.1"/ >

17 <lamp status ="OFF" id="4.2"/ >

</lamps >

19 </room >

</floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple ßoors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
di! erent ÒthingsÓ are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >

<rule id="12" perm_id ="22"

3 uri="http :// house/floor /4"/>

<rule id="13" perm_id ="23"

5 uri="http :// house/floor /4"/>

...

7 <data uri="http :// house/floor /4"">

<content >

9 /house/floor[@id=4]

</content >

11 </data >

...

13 <filter id="43">

<link >

15 /house/floor[@id =4]// lamps

</link >

17 </filter >

<perm id="22" filter_id ="43"

19 verb="get"/>

<perm id="23" verb="get"/>

21 </resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two di ! erent rules are
mapping the denoted resource. While rule Ò13Ó allows the
retrieval of all data from the 4 th ßoor, rule Ò12Ó Þlters the
same resource by only returning lamps-nodes. This addi-
tional Þltering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the Þltering oflamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware Þltering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP -operation. Related to modiÞcation requests, such a
Þltering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can o! er a simple yet
e! ective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them e" ciently.

As a rough approximation, VDocsare ÒXML (database)
viewsÓ analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocsare the results of XQueries
computed on demand from the XML Þles explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a Þle system), presented to the user as documents.
Furthermore they can be presented as Þle system entities in
database or physical Þles written to a Þle system. Like views
in relational databases, VDocsbecome very useful abstrac-
tions in the interaction with collection of XML documents.

VDocs are deÞned by a VDoc SpeciÞcation which essen-
tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocsSpecs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
deÞned either in VDocSpec itself or passed on-the-ßy upon
a VDocobtaining. Parameters may dramatically change the
content of VDocwhereas there only one VDocSpec exists.
As we will see in Section 3.2 the singleVDocSpec may be
used to manage modifying REST requests consistently in a
Þne-granular manner.

Additionally, one of the most advanced features is the abil-
ity to edit VDocsand process the modiÞed version further:
changed parts of a VDocthat came from Þles in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDocis not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDocXQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocsis that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP -

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of Þne-
grained Þltering rules expressed via XPath, certain XQuery
Update modiÞcations might be forbidden for a certain user.

To overcome this problem we are proposing to use the
VDocsconcept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request Þltering restrictions posed by an XPath expression.

We propose to have a VDocSpec that admit two param-
eters: an URI of the resource and the Þltering XPath ex-

3. XML-BASED RESOURCES
Since XML offers ßexible adaption as well as enriched

toolsets, multiple non- REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware Þltering.

Listing 1: A resource before modifying

1 <house >

<floor id="1">

3 <room >

...

5 <lamps >

<lamp status ="OFF" id="1.1"/ >

7 <lamp status ="OFF" id="1.2"/ >

</lamps >

9 </room >

</floor >

11 ...

<floor id="4">

13 <room >

...

15 <lamps >

<lamp status ="OFF" id="4.1"/ >

17 <lamp status ="OFF" id="4.2"/ >

</lamps >

19 </room >

</floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple ßoors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
different ÒthingsÓ are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >

<rule id="12" perm_id ="22"

3 uri="http :// house/floor /4"/>

<rule id="13" perm_id ="23"

5 uri="http :// house/floor /4"/>

...

7 <data uri="http :// house/floor /4"">

<content >

9 /house/floor[@id=4]

</content >

11 </data >

...

13 <filter id="43" >

<link >

15 /house/floor[@id =4]// lamps

</link >

17 </filter >

<perm id="22" filter_id ="43"

19 verb="get"/>

<perm id="23" verb="get"/>

21 </resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two di fferent rules are
mapping the denoted resource. While rule Ò13Ó allows the
retrieval of all data from the 4 th ßoor, rule Ò12Ó Þlters the
same resource by only returning lamps-nodes. This addi-
tional Þltering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the Þltering oflamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware Þltering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP -operation. Related to modiÞcation requests, such a
Þltering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can offer a simple yet
effective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them efficiently.

As a rough approximation, VDocs are ÒXML (database)
viewsÓ analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocs are the results of XQueries
computed on demand from the XML Þles explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a Þle system), presented to the user as documents.
Furthermore they can be presented as Þle system entities in
database or physical Þles written to a Þle system. Like views
in relational databases, VDocs become very useful abstrac-
tions in the interaction with collection of XML documents.
VDocs are deÞned by a VDoc SpeciÞcation which essen-

tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocs Specs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
deÞned either in VDoc Spec itself or passed on-the-ßy upon
a VDoc obtaining. Parameters may dramatically change the
content of VDoc whereas there only one VDoc Spec exists.
As we will see in Section 3.2 the singleVDoc Spec may be
used to manage modifying REST requests consistently in a
Þne-granular manner.

Additionally, one of the most advanced features is the abil-
ity to edit VDocs and process the modiÞed version further:
changed parts of a VDoc that came from Þles in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDoc is not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDoc XQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocs is that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP -

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of Þne-
grained Þltering rules expressed via XPath, certain XQuery
Update modiÞcations might be forbidden for a certain user.

To overcome this problem we are proposing to use the
VDocs concept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request Þltering restrictions posed by an XPath expression.

We propose to have a VDoc Spec that admit two param-
eters: an URI of the resource and the Þltering XPath ex-

Sunday, March 27, 2011

Example

11

3. XML-BASED RESOURCES
Since XML o! ers flexible adaption as well as enriched

toolsets, multiple non-REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware filtering.

Listing 1: A resource before modifying

1 <house >
<floor id ="1" >

3 <room >
...

5 <lamps >
< lamp status =" OFF" id ="1.1"/ >

7 <lamp status =" OFF" id ="1.2"/ >
</ lamps >

9 </ room >
</ floor >

11 ...
< f loor id ="4" >

13 <room >
...

15 <lamps >
< lamp status =" OFF" id ="4.1"/ >

17 <lamp status =" OFF" id ="4.2"/ >
</ lamps >

19 </ room >
</ floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple floors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to theWeb of Things paradigm where
di! erent “things” are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >
<rule id ="12" perm_id ="22"

3 uri =" http :// house / f loor /4"/ >
<rule id ="13" perm_id ="23"

5 uri =" http :// house / f loor /4"/ >
...

7 <data uri =" http :// house / f loor /4"" >
<content >

9 / house / f loor [@id =4]
</ content >

11 </data >
...

13 <fi l ter id ="43" >
<link >

15 / house / f loor [@id =4]// lamps
</ link >

17 </ fi lter >
<perm id ="22" f i l ter_id ="43"

19 verb =" get "/>
<perm id ="23" verb =" get "/>

21 </ resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two di! erent rules are
mapping the denoted resource. While rule “13” allows the
retrieval of all data from the 4th floor, rule “12” filters the
same resource by only returning lamps-nodes. This addi-
tional filtering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the filtering of lamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware filtering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP-operation. Related to modification requests, such a
filtering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can o! er a simple yet
e! ective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-

tional devices and processing them e" ciently.
As a rough approximation, VDocs are “XML (database)

views” analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocs are the results of XQueries
computed on demand from the XML files explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a file system), presented to the user as documents.
Furthermore they can be presented as file system entities in
database or physical files written to a file system. Like views
in relational databases, VDocs become very useful abstrac-
tions in the interaction with collection of XML documents.
VDocs are defined by a VDoc Specification which essen-

tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocs Specs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
defined either in VDoc Spec itself or passed on-the-fly upon
a VDoc obtaining. Parameters may dramatically change the
content of VDoc whereas there only one VDoc Spec exists.
As we will see in Section 3.2 the single VDoc Spec may be
used to manage modifying REST requests consistently in a
fine-granular manner.
Additionally, one of the most advanced features is the abil-

ity to edit VDocs and process the modified version further:
changed parts of a VDoc that came from files in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDoc is not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDoc XQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocs is that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifyingHTTP-

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of fine-
grained filtering rules expressed via XPath, certain XQuery
Update modifications might be forbidden for a certain user.
To overcome this problem we are proposing to use the

VDocs concept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request filtering restrictions posed by an XPath expression.
We propose to have a VDoc Spec that admit two param-

eters: an URI of the resource and the filtering XPath ex-

3. XML-BASED RESOURCES
Since XML o! ers ßexible adaption as well as enriched

toolsets, multiple non- REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware Þltering.

Listing 1: A resource before modifying

1 <house >

<floor id="1">

3 <room >

...

5 <lamps >

<lamp status ="OFF" id="1.1"/ >

7 <lamp status ="OFF" id="1.2"/ >

</lamps >

9 </room >

</floor >

11 ...

<floor id="4">

13 <room >

...

15 <lamps >

<lamp status ="OFF" id="4.1"/ >

17 <lamp status ="OFF" id="4.2"/ >

</lamps >

19 </room >

</floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple ßoors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
di! erent ÒthingsÓ are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 <resources >

<rule id="12" perm_id ="22"

3 uri="http :// house/floor /4"/>

<rule id="13" perm_id ="23"

5 uri="http :// house/floor /4"/>

...

7 <data uri="http :// house/floor /4"">

<content >

9 /house/floor[@id=4]

</content >

11 </data >

...

13 <filter id="43">

<link >

15 /house/floor[@id =4]// lamps

</link >

17 </filter >

<perm id="22" filter_id ="43"

19 verb="get"/>

<perm id="23" verb="get"/>

21 </resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two di ! erent rules are
mapping the denoted resource. While rule Ò13Ó allows the
retrieval of all data from the 4 th ßoor, rule Ò12Ó Þlters the
same resource by only returning lamps-nodes. This addi-
tional Þltering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the Þltering oflamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware Þltering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP -operation. Related to modiÞcation requests, such a
Þltering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can o! er a simple yet
e! ective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them e" ciently.

As a rough approximation, VDocsare ÒXML (database)
viewsÓ analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocsare the results of XQueries
computed on demand from the XML Þles explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a Þle system), presented to the user as documents.
Furthermore they can be presented as Þle system entities in
database or physical Þles written to a Þle system. Like views
in relational databases, VDocsbecome very useful abstrac-
tions in the interaction with collection of XML documents.

VDocs are deÞned by a VDoc SpeciÞcation which essen-
tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocsSpecs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
deÞned either in VDocSpec itself or passed on-the-ßy upon
a VDocobtaining. Parameters may dramatically change the
content of VDocwhereas there only one VDocSpec exists.
As we will see in Section 3.2 the singleVDocSpec may be
used to manage modifying REST requests consistently in a
Þne-granular manner.

Additionally, one of the most advanced features is the abil-
ity to edit VDocsand process the modiÞed version further:
changed parts of a VDocthat came from Þles in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDocis not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDocXQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocsis that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP -

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of Þne-
grained Þltering rules expressed via XPath, certain XQuery
Update modiÞcations might be forbidden for a certain user.

To overcome this problem we are proposing to use the
VDocsconcept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request Þltering restrictions posed by an XPath expression.

We propose to have a VDocSpec that admit two param-
eters: an URI of the resource and the Þltering XPath ex-

3. XML-BASED RESOURCES
Since XML offers flexible adaption as well as enriched

toolsets, multiple non-REST -aware resources are encapsu-
lated in XML for convenience reasons[16]. Therefore we
chose XML as the base for a real world example including
resource-aware filtering.

Listing 1: A resource before modifying

1 <house >
<floor id ="1" >

3 <room >
...

5 < lamps >
< lamp status =" OFF" id ="1.1"/ >

7 < lamp status =" OFF" id ="1.2"/ >
</ lamps >

9 </ room >
</ floor >

11 ...
< f loor id ="4" >

13 <room >
...

15 < lamps >
< lamp status =" OFF" id ="4.1"/ >

17 < lamp status =" OFF" id ="4.2"/ >
</ lamps >

19 </ room >
</ floor >

21 </house >

Listing 1 shows an example representing a house. The
structure is partitioned into multiple floors including rooms,
doors and lamps. Such an example could represent an ab-
stract resource related to the Web of Things paradigm where
different “things” are simply encapsulated into XML.

Listing 2: XML Fragment denoting read access only

1 < resources >
<rule id ="12" perm_id ="22"

3 uri =" http :// house / f loor /4"/ >
<rule id ="13" perm_id ="23"

5 uri =" http :// house / f loor /4"/ >
...

7 <data uri =" http :// house / f loor /4"" >
<content >

9 / house / f loor [@id =4]
</ content >

11 </data >
...

13 < f i l ter id ="43" >
<link >

15 / house / f loor [@id =4]// lamps
</ link >

17 </ fi l ter >
<perm id ="22" f i l ter_id ="43"

19 verb =" get "/>
<perm id ="23" verb =" get "/>

21 </ resources >

Based on this example, List. 2 shows the PXD mapping
the data of List. 1. As clearly visible, two different rules are
mapping the denoted resource. While rule “13” allows the
retrieval of all data from the 4th floor, rule “12” filters the
same resource by only returning lamps-nodes. This addi-
tional filtering takes place on the response of the retrieval
process and is shown in Fig. 4a. Since the filtering of lamps-
nodes occurs on the base of an intersected XPath-expression,
the resource-aware filtering is scalable as well as extensible
and applied after the mandatory checking against URI and

HTTP -operation. Related to modification requests, such a
filtering of the data seems not to be as trivial. However,
based on the concept of VDocs, we can offer a simple yet
effective mechanism applicable to XML.

3.1 The Virtual Documents Concept
Virtual Documents (VDocs) [18] are a general framework

for integrating XQueries into XML documents as computa-
tional devices and processing them efficiently.
As a rough approximation, VDocs are “XML (database)

views” analogous to views in relational databases; these are
virtual tables in the sense that they are the results of SQL
queries computed on demand from the explicitly represented
database tables. Similarly, VDocs are the results of XQueries
computed on demand from the XML files explicitly repre-
sented in some storage (like in an XML database or, sim-
ply, in a file system), presented to the user as documents.
Furthermore they can be presented as file system entities in
database or physical files written to a file system. Like views
in relational databases, VDocs become very useful abstrac-
tions in the interaction with collection of XML documents.
VDocs are defined by a VDoc SpeciÞcation which essen-

tially is a mixture of static XML nodes together with the
XQuery queries and rules how the results of those queries
should be injected into the result document. VDocs Specs
are also parametrizable, that is it may contain certain vari-
ables (like URIs of the resources to be processed) that are
defined either in VDoc Spec itself or passed on-the-fly upon
a VDoc obtaining. Parameters may dramatically change the
content of VDoc whereas there only one VDoc Spec exists.
As we will see in Section 3.2 the single VDoc Spec may be
used to manage modifying REST requests consistently in a
fine-granular manner.
Additionally, one of the most advanced features is the abil-

ity to edit VDocs and process the modified version further:
changed parts of a VDoc that came from files in our storage
will be transparently propagated back to the sources. Edit-
ing static parts of a VDoc is not allowed; otherwise a VDoc
processor should complain and disallow further processing.
Naturally, VDoc XQuery results that are not originated from
documents in a storage cannot be edited as well. The strong
advantage of editing VDocs is that users can abstract away
from the physical documents in the repository and work with
semantically consistent objects (like theorems or exercises)
focusing only on relevant information aggregated into one
logical unit.

3.2 Virtual Documents in Hecate
Given that our resources are in XML, the modifying HTTP -

verbs (like PUT or POST) naturally may contain XQuery
Update statements in the body to modify the requested re-
source. However, taking into account the presence of fine-
grained filtering rules expressed via XPath, certain XQuery
Update modifications might be forbidden for a certain user.
To overcome this problem we are proposing to use the

VDocs concept together with its editing abilities. Without
losing a generality, we will assume that the XQuery Update
statements are sent using the POST requests. Also we as-
sume that the POST request are allowed for a certain URI
and a user, therefore we should take into account only the
request filtering restrictions posed by an XPath expression.
We propose to have a VDoc Spec that admit two param-

eters: an URI of the resource and the filtering XPath ex-

Sunday, March 27, 2011

12

house
ßoor

room

DATA

GET john.doe:secretpass@http://house/ßoor4

HTTP-REQUEST

PERMITTED
DATA

http://house/
RESOURCE

/house[./ßoor/@id=4]//lamps/*

XPath RESPONSE

@id=4
lamps
lamp lamp

room

lamps
lamp lamp

Read Requests

Sunday, March 27, 2011

13

Write Requests

Concerns about authorized writes:

‣ Atomicity of modifications

‣ Visibility of data

‣ …

Clear definition of constraints going along with
modification requests:

‣ Weakening Authorization?

‣ Persistent Views?

Sunday, March 27, 2011

14

Write Requests

Concerns about authorized writes:

‣ Atomicity of modifications

‣ Visibility of data

‣ …

Clear definition of constraints going along with
modification requests:

‣ Weakening Authorization?

‣ Persistent Views? (e.g. VDocs in XML)

Sunday, March 27, 2011

15

VDocs

‣ (Persistent / In-Memory) views on XML

‣ Wrapping XQueries

‣ On-the-fly annotating of elements

‣ Consists out of

‣ VDoc processor

‣ VDoc specification

In our context:

On-the-fly annotating of permissions to verify valid
permissions on intermediate result

Sunday, March 27, 2011

eters: an URI of the resource and the filtering XPath ex-

pression. We call such a VDoc an authorization VDoc . Fine-

granular editing approach needs several items with respect

to VDocs:

1. The VDoc Spec is supposed to fetch the resource iden-

tified by the URI and go through all nodes that the

XPath expression selects and mark them as editable.
Not every XPath expression will select at least one

node: in this case it will mean that no part of the re-

source can be modified. Evaluating XPath expressions

is not a part of the XQuery specification, however,

many XQuery processors provide such a functionality

either via extension XQuery functions or a possibil-

ity to implement your own external XQuery function

in some other programming language. So we consider

such a feature as given in our possession.

2. The XQuery Update statement supplied with a POST

request will be executed on the VDoc content.

3. A VDoc processor compares the modified and the origi-

nal VDocs and controls that only parts that were marked

editable in step 1 are modified. If a VDoc processor

identifies that some nodes that are not changeable are

modified nonetheless, then it returns an error code to

Hecate which in turn sends a forbidden response

back to a user. Otherwise, there are two options how

to proceed further:

• Send a modified VDoc with editing markers filtered

out
2
.

• Send an XQuery Update statement to the un-

derlying system since we can guarantee that this

statement would not modify disallowed nodes in

the resource.

After Hecate receives a response from the underlying sys-

tem it can generate the appropriate response for the client.

Despite that the described approach provides fine-granular

permissions for modifying resources, it has several disadvan-

tages which might be a good price to pay for the flexibility

we gain:

• Typically the processing of VDocs is done in the main

memory resulting in scalability problems if the resource

is big enough not to fit into the main memory. A pos-

sible solution to overcome this problem would be to

use an XML database in the Hecate layer.

• Fine-granular editing of the resource implies two pro-

cessing steps: (i) a modification of the resource in

Hecate , and (ii) its modification in the underlaying

system. It might be not so efficient as doing the modi-

fication in only one software component. On the other

hand, it allows us to maintain the loose coupling be-

tween our authorization framework and the underlying

system.

2
Those markers could be some auxiliary attributes embed-

ded into the XML elements, special comment nodes or some

kind of processing instructions – this depends on a VDoc
processor implementation

3.3 A Modifying Example

Let us consider a simple example of a data-aware request

where the related workflow is shown in Fig. 4b. Assume that

a user is allowed to modify the state of the lamps only on

the fourth floor of a particular house resource (the filtering

XPath would look like /house/floor[@id=4]//lamps), and

all lamps in the house are initially off as denoted in List. 1.

Now assume that the user sends a request with an XQuery

Update statement that intends to switch all lamps on:

for $status in /house //lamp/@status return

replace value of node $status with "ON"

The authorization framework first supplies the URI of the

requested resource together with a filtering XPath expres-

sion to an authorization VDoc Spec (see Section 3.2). A result

VDoc will have elements amenable to modifications marked

with special VDoc attributes
3
. After the content of VDoc is

retrieved, a supplied XQuery Update expression is applied

to it (see List. 3).

Listing 3: A marked and modified resource

<house >

2 <floor id="1">

<room >

4 ...

<lamps >

6 <lamp status ="ON" id ="1323412"/ >

<lamp status ="ON" id="5456"/ >

8 </lamps >

</room >

10 </floor >

...

12 <floor id="4">

<room >

14 ...

<lamps >

16 <lamp vdoc:uri ="..."

vdoc:xpath ="/ house [1]/ floor [4]/ room [1]/ lamp [1]"

18 status ="ON" id="3443"/ >

<lamp vdoc:uri ="..."

20 vdoc:xpath ="/ house [1]/ floor [4]/ room [1]/ lamp [2]"

status ="ON" id="5456"/ >

22 </lamps >

</room >

24 </floor >

</house >

Note that the status of not marked lamps (for the floor

1) have also been modified. A VDoc processor will compare

it with an original VDoc (where all lamps are off) and will

recognize that the statuses of not marked lamps have also

been changed, thus it means that the modification was not

allowed for every XML node that has been altered. There-

fore a forbidden request is sent back to the user. If there

were only lamps on the fourth floor that we modified then

a VDoc processor would successfully validate changes and

would send a POST request with a modified resource to the

underlying system filtering out the marker attributes before-

hand.

4. IMPLEMENTATION

Hecate consists out of modular components enabling in-

tegration into already existing projects. We therefore prove

3
In current VDoc implementation those attributes denote the

URI of a document and the XPath location of an element in-

side the document. Strictly speaking, such detailed informa-

tion is not necessary for our scenario, however, this marking

stays consistent with a general VDoc editing approach.

VDoc-Example

16

Sunday, March 27, 2011

17

XQ
ue

ry
 U

pd
ate

POST john.doe:secretpass@http://house/floor4
HTTP-REQUEST

for $status in /house//lamp/@status return
replace value of node $status with "ON"Body

VDoc
Spec

house
floor

room @id=4
room

lamp lamp

lamps
/house[./floor/@id=4]//lamps

Permission-XPath

VDochouse
floor

room @id=4
room

lamp lamp

lamps

mod.VDoc

only marked
Nodes modified

No

Yes

Returning 403
(forbidden)

Apply Changes

Marking Nodes

Write Requests

Sunday, March 27, 2011

Summary

‣ Flexible authorization framework fitting the
extensibility of HTTP and REST

‣ Independence from resources

‣ Optional extension of authorization workflow
with the help of in-depth knowledge

‣ Implementation in JAX-RX (Treetank) and
TntBase

18

Sunday, March 27, 2011

Thanks for your
attention

Any Questions now?

(or later: sebastian.graf@uni-konstanz.de)

19

Sunday, March 27, 2011

